Graphics-processor-unit-based parallelization of optimized baseline wander filtering algorithms for long-term electrocardiography
Kein Vorschaubild vorhanden
Autor:in (Körperschaft)
Publikationsdatum
2015
Typ der Arbeit
Studiengang
Typ
01A - Beitrag in wissenschaftlicher Zeitschrift
Herausgeber:innen
Herausgeber:in (Körperschaft)
Betreuer:in
Übergeordnetes Werk
IEEE Transactions on Biomedical Engineering
Themenheft
DOI der Originalpublikation
Link
Reihe / Serie
Reihennummer
Jahrgang / Band
62
Ausgabe / Nummer
6
Seiten / Dauer
1576-1584
Patentnummer
Verlag / Herausgebende Institution
IEEE
Verlagsort / Veranstaltungsort
Auflage
Version
Programmiersprache
Abtretungsempfänger:in
Praxispartner:in/Auftraggeber:in
Zusammenfassung
Long-term electrocardiogram (ECG) often suffers from relevant noise. Baseline wander in particular is pronounced in ECG recordings using dry or esophageal electrodes, which are dedicated for prolonged registration. While analog high-pass filters introduce phase distortions, reliable offline filtering of the baseline wander implies a computational burden that has to be put in relation to the increase in signal-to-baseline ratio (SBR). Here, we present a graphics processor unit (GPU)-based parallelization method to speed up offline baseline wander filter algorithms, namely the wavelet, finite, and infinite impulse response, moving mean, and moving median filter. Individual filter parameters were optimized with respect to the SBR increase based on ECGs from the Physionet database superimposed to autoregressive modeled, real baseline wander. A Monte-Carlo simulation showed that for low input SBR the moving median filter outperforms any other method but negatively affects ECG wave detection. In contrast, the infinite impulse response filter is preferred in case of high input SBR. However, the parallelized wavelet filter is processed 500 and four times faster than these two algorithms on the GPU, respectively, and offers superior baseline wander suppression in low SBR situations. Using a signal segment of 64 mega samples that is filtered as entire unit, wavelet filtering of a seven-day high-resolution ECG is computed within less than 3 s. Taking the high filtering speed into account, the GPU wavelet filter is the most efficient method to remove baseline wander present in long-term ECGs, with which computational burden can be strongly reduced.
Schlagwörter
Fachgebiet (DDC)
600 - Technik, Medizin, angewandte Wissenschaften
Veranstaltung
Startdatum der Ausstellung
Enddatum der Ausstellung
Startdatum der Konferenz
Enddatum der Konferenz
Datum der letzten Prüfung
ISBN
ISSN
0018-9294
1558-2531
1558-2531
Sprache
Englisch
Während FHNW Zugehörigkeit erstellt
Nein
Zukunftsfelder FHNW
Publikationsstatus
Veröffentlicht
Begutachtung
Peer-Review der ganzen Publikation
Open Access-Status
Closed
Lizenz
Zitation
NIEDERHAUSER, Thomas, Thomas WYSS-BALMER, Andreas HAEBERLIN, Thanks MARISA, Reto WILDHABER, Josef GOETTE, Marcel JACOMET und Rolf VOGEL, 2015. Graphics-processor-unit-based parallelization of optimized baseline wander filtering algorithms for long-term electrocardiography. IEEE Transactions on Biomedical Engineering. 2015. Bd. 62, Nr. 6, S. 1576–1584. DOI 10.1109/tbme.2015.2395456. Verfügbar unter: https://irf.fhnw.ch/handle/11654/46822