Video demonstrations can predict the intention to use digital learning technologies

dc.accessRightsAnonymous*
dc.contributor.authorSprenger, David
dc.contributor.authorSchwaninger, Adrian
dc.date.accessioned2023-02-20T13:27:39Z
dc.date.available2023-02-13T14:35:31Z
dc.date.available2023-02-20T13:27:39Z
dc.date.issued2023-01-21
dc.description.abstractThe technology acceptance model (TAM) uses perceived usefulness and perceived ease of use to predict the intention to use a technology which is important when deciding to invest in a technology. Its extension for e-learning (the general extended tech-nology acceptance model for e-learning; GETAMEL) adds subjective norm to predict the intention to use. Technology acceptance is typically measured after the technology has been used for at least three months. This study aims to identify whether a minimal amount of exposure to the technology using video demonstrations is sufficient to predict the intention to use it three months later. In two studies—one using TAM and one using GETAMEL—we showed students of different cohorts (94 and 111 participants, respectively) video demonstra-tions of four digital technologies (classroom response system, classroom chat, e-lectures, mobile virtual real-ity). We then measured technology acceptance imme-diately after the demonstration and after three months of technology use. Using partial least squares model-ling, we found that perceived usefulness significantly predicted the intention to use three months later. In GETAMEL, perceived usefulness significantly predicted the intention to use for three of the four learning technol-ogies, while subjective norm only predicted the inten-tion to use for mobile virtual reality. We conclude that video demonstrations can provide valuable insight for decision-makers and educators on whether students will use a technology before investing in it.en_US
dc.identifier.doi10.1111/bjet.13298
dc.identifier.issn0007-1013
dc.identifier.issn1467-8535
dc.identifier.urihttps://irf.fhnw.ch/handle/11654/34602
dc.identifier.urihttps://doi.org/10.26041/fhnw-4650
dc.language.isoenen_US
dc.publisherWileyen_US
dc.relation.ispartofBritish Journal of Educational Technologyen_US
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.subjectdigital learning technologiesen_US
dc.subjecte-learningen_US
dc.subjectperceived usefulnesen_US
dc.subjectvirtual realityen_US
dc.subject.ddc003 - Systemeen_US
dc.titleVideo demonstrations can predict the intention to use digital learning technologiesen_US
dc.type01A - Beitrag in wissenschaftlicher Zeitschrift
dspace.entity.typePublication
fhnw.InventedHereYesen_US
fhnw.IsStudentsWorknoen_US
fhnw.ReviewTypeAnonymous ex ante peer review of a complete publicationen_US
fhnw.affiliation.hochschuleHochschule für Angewandte Psychologiede_CH
fhnw.affiliation.institutInstitut Mensch in komplexen Systemende_CH
fhnw.openAccessCategoryHybriden_US
fhnw.publicationStatePublisheden_US
relation.isAuthorOfPublication84a12866-64ae-4515-9941-b36c3c01b748
relation.isAuthorOfPublication48554766-ff3e-4d66-8685-c1fc7484f9a3
relation.isAuthorOfPublication.latestForDiscovery48554766-ff3e-4d66-8685-c1fc7484f9a3
Dateien
Originalbündel
Gerade angezeigt 1 - 1 von 1
Lade...
Vorschaubild
Name:
Video demonstrations can predict the intention to use digital learning technologies.pdf
Größe:
8.5 MB
Format:
Adobe Portable Document Format
Beschreibung:
Lizenzbündel
Gerade angezeigt 1 - 1 von 1
Lade...
Vorschaubild
Name:
license.txt
Größe:
1.37 KB
Format:
Item-specific license agreed upon to submission
Beschreibung:

Versionsgeschichte

Gerade angezeigt 1 - 2 von 2
VersionDatumZusammenfassung
2*
2023-02-20 12:58:10
Lizenz und Voltext
2023-02-13 14:35:31
* Ausgewählte Version