Predicting acceptance of autonomous shuttle buses by personality profiles: a latent profile analysis
Kein Vorschaubild vorhanden
Autor:innen
Autor:in (Körperschaft)
Publikationsdatum
2023
Typ der Arbeit
Studiengang
Typ
01A - Beitrag in wissenschaftlicher Zeitschrift
Herausgeber:innen
Herausgeber:in (Körperschaft)
Betreuer:in
Übergeordnetes Werk
Transportation
Themenheft
DOI der Originalpublikation
Link
Reihe / Serie
Reihennummer
Jahrgang / Band
2023
Ausgabe / Nummer
Seiten / Dauer
Patentnummer
Verlag / Herausgebende Institution
Springer
Verlagsort / Veranstaltungsort
Berlin
Auflage
Version
Programmiersprache
Abtretungsempfänger:in
Praxispartner:in/Auftraggeber:in
Zusammenfassung
Abstract Autonomous driving and its acceptance are becoming increasingly important in psychological research as the application of autonomous functions and artificial intelligence in vehicles increases. In this context, potential users are increasingly considered, which is the basis for the successful establishment and use of autonomous vehicles. Numerous studies show an association between personality variables and the acceptance of autonomous vehicles. This makes it more relevant to identify potential user profiles to adapt autonomous vehicles to the potential user and the needs of the potential user groups to marketing them effectively. Our study, therefore, addressed the identification of personality profiles for potential users of autonomous vehicles (AVs). A sample of 388 subjects answered questions about their intention to use autonomous buses, their sociodemographics, and various personality variables. Latent Profile Analysis was used to identify four personality profiles that differed significantly from each other in their willingness to use AVs. In total, potential users with lower anxiety and increased self-confidence were more open toward AVs. Technology affinity as a trait also contributes to the differentiation of potential user profiles and AV acceptance. The profile solutions and the correlations with the intention to use proved to be replicable in cross validation analyses.
Schlagwörter
Fachgebiet (DDC)
150 - Psychologie
Veranstaltung
Startdatum der Ausstellung
Enddatum der Ausstellung
Startdatum der Konferenz
Enddatum der Konferenz
Datum der letzten Prüfung
ISBN
ISSN
1572-9435
0049-4488
0049-4488
Sprache
Deutsch
Während FHNW Zugehörigkeit erstellt
Nein
Zukunftsfelder FHNW
Publikationsstatus
Veröffentlicht
Begutachtung
Peer-Review der ganzen Publikation
Open Access-Status
Closed
Lizenz
Zitation
SCHANDL, Franziska, Peter FISCHER und Matthias HUDECEK, 2023. Predicting acceptance of autonomous shuttle buses by personality profiles: a latent profile analysis. Transportation. 2023. Bd. 2023. DOI 10.1007/s11116-023-10447-4. Verfügbar unter: https://irf.fhnw.ch/handle/11654/47588