robsurvey: robust survey statistics estimation

dc.contributor.authorSchoch, Tobias
dc.date.accessioned2024-05-07T08:31:03Z
dc.date.available2024-05-07T08:31:03Z
dc.date.issued2022-06-23
dc.description.abstractThe robsurvey package provides robust estimation methods for data from complex sample surveys. The package implements the following methods: (1) basic outlier-robust location estimators of the population mean and total using weight reduction, trimming, winsorization, and M-estimation (robust Horvitz-Thompson and Hajek estimators); (2) robust survey regression M- and GM-estimators of the type Mallows and Schweppe; (3) robust model-assisted estimators of the population mean and total. A key design pattern of the package is that the methods are available in two flavors: bare-bone functions and survey methods. Bare-bone functions are stripped-down versions of the survey methods in terms of functionality. They may serve package developers as building blocks. The survey methods are much more capable and depend–for variance estimation–on the R package survey. The talk is organized into three parts: (1) Overview of the robust methods in robsurvey, including a comparison with other R packages (survey, robustbase, robeth, and MASS), Stata (robstat and rreg), SAS (robustreg), NAG and GNU Scientific Library. (2) Design patterns and possible extensions of the package. (3) Use cases and applications of the package.
dc.description.urihttps://user2022.r-project.org/
dc.eventuseR! Conference 2022
dc.event.end2022-06-23
dc.event.start2022-06-20
dc.identifier.urihttps://irf.fhnw.ch/handle/11654/43512
dc.language.isoen
dc.spatialOnline
dc.subjectRobust statistics
dc.subject.ddc330 - Wirtschaft
dc.titlerobsurvey: robust survey statistics estimation
dc.type06 - Präsentation
dspace.entity.typePublication
fhnw.InventedHereYes
fhnw.ReviewTypeAnonymous ex ante peer review of an abstract
fhnw.affiliation.hochschuleHochschule für Wirtschaftde_CH
fhnw.affiliation.institutInstitute for Competitiveness and Communicationde_CH
relation.isAuthorOfPublication39a57657-8c2e-4332-ac6f-ab07436a9fcb
relation.isAuthorOfPublication.latestForDiscovery39a57657-8c2e-4332-ac6f-ab07436a9fcb
Dateien
Lizenzbündel
Gerade angezeigt 1 - 1 von 1
Lade...
Vorschaubild
Name:
license.txt
Größe:
1.36 KB
Format:
Item-specific license agreed upon to submission
Beschreibung: