Benchmarking Recommender Algorithms for Business Intelligence Consultancy

Loading...
Thumbnail Image
Author (Corporation)
Publication date
2018
Typ of student thesis
Master
Course of study
Type
11 - Student thesis
Editors
Editor (Corporation)
Parent work
Special issue
DOI of the original publication
Link
Series
Series number
Volume
Issue / Number
Pages / Duration
Patent number
Publisher / Publishing institution
Hochschule für Wirtschaft FHNW
Place of publication / Event location
Olten
Edition
Version
Programming language
Assignee
Practice partner / Client
Abstract
Recommender Systems are popularly used to give useful suggestions to the users in various business domains and the effectiveness of the recommender system depends upon the performance of the underlying algorithm. A common method for evaluating the performance of recommender algorithms is to benchmark them by calculating performance metrics. However, a benchmarking for recommender algorithms in the domain of Business Intelligence (BI) consultancy has not yet been performed. The BI consultants use their expertise and experience to provide professional advice or recommendations to their customers for effective and efficient decision-making. The goal of this research is to evaluate performance metrics of different recommender algorithm(s) that can be used in a recommender assistant for a BI consultancy firm to predict KPI recommendations. In this research, recommender algorithms based on traditional (collaborative-filtering), graph-based and Case-based reasoning recommender systems were compared by performing experiments to verify if recommender algorithm(s) exist that give more effective recommendations than the BI consultants. The experiments were carried out using a controlled experiment methodology similar to what Text REtrieval Conference (TREC) uses in the field of Information Retrieval and evaluated using the metrics used in TREC.
Keywords
Subject (DDC)
Project
Event
Exhibition start date
Exhibition end date
Conference start date
Conference end date
Date of the last check
ISBN
ISSN
Language
English
Created during FHNW affiliation
Yes
Strategic action fields FHNW
Publication status
Review
Open access category
License
Citation
Pande, C. (2018). Benchmarking Recommender Algorithms for Business Intelligence Consultancy [Hochschule für Wirtschaft FHNW]. https://irf.fhnw.ch/handle/11654/39808