Effects of noisy multiobjective test functions applied to evolutionary optimization algorithms
Autor:innen
Autor:in (Körperschaft)
Publikationsdatum
2020
Typ der Arbeit
Studiengang
Typ
01A - Beitrag in wissenschaftlicher Zeitschrift
Herausgeber:innen
Herausgeber:in (Körperschaft)
Betreuer:in
Übergeordnetes Werk
Journal of Advances in Information Technology
Themenheft
DOI der Originalpublikation
Link
Reihe / Serie
Reihennummer
Jahrgang / Band
11
Ausgabe / Nummer
3
Seiten / Dauer
128-134
Patentnummer
Verlag / Herausgebende Institution
Engineering and Technology Publishing
Verlagsort / Veranstaltungsort
Auflage
Version
Programmiersprache
Abtretungsempfänger:in
Praxispartner:in/Auftraggeber:in
Zusammenfassung
In this paper we study the effects of noise in multiobjective optimization problems. We consider a test function, which may be affected by noise with different strength and frequency of occurrence. To simplify the analysis, the noise is applied to only one of the objective functions, i.e. one of the objective functions is affected by additional random influences. Three different evolutionary algorithms for multiobjective problems are analyzed in this way: the Covariance Matrix Adaption Evolution Strategy (CMA-ES), the Non-dominated Sorting Genetic Algorithm-II (NSGA-II), and the Particle Swarm Optimization (PSO). The results are presented and analyzed with respect to the resulting Pareto fronts and with respect to the distribution of variable values during the algorithm run. It can be observed that all three algorithms are basically able to derive suitable results. However, only PSO leads to a sparse Pareto front in case of noisy and non-noisy situations while CMA and NSGA-II perform similarly well. In some situations for NSGA-II and more clearly for CMA-ES specific patterns for the variable values (denoted as striae in this paper) can be observed which appear to be partly caused by the noise.
Schlagwörter
Fachgebiet (DDC)
330 - Wirtschaft
Veranstaltung
Startdatum der Ausstellung
Enddatum der Ausstellung
Startdatum der Konferenz
Enddatum der Konferenz
Datum der letzten Prüfung
ISBN
ISSN
1798-2340
Sprache
Englisch
Während FHNW Zugehörigkeit erstellt
Ja
Zukunftsfelder FHNW
Publikationsstatus
Veröffentlicht
Begutachtung
Peer-Review der ganzen Publikation
Open Access-Status
Gold
Zitation
RYTER, Remo, Thomas HANNE und Rolf DORNBERGER, 2020. Effects of noisy multiobjective test functions applied to evolutionary optimization algorithms. Journal of Advances in Information Technology. 2020. Bd. 11, Nr. 3, S. 128–134. DOI 10.12720/jait.11.3.128-134. Verfügbar unter: https://doi.org/10.26041/fhnw-6798