Radio Explorations: Computing Identities of Transmissions
Dateien
[pdf slides of the presentation]
Autor:innen
Autor:in (Körperschaft)
Publikationsdatum
25.03.2021
Typ der Arbeit
Studiengang
Typ
06 - Präsentation
Herausgeber:innen
Herausgeber:in (Körperschaft)
Betreuer:in
Übergeordnetes Werk
Themenheft
DOI der Originalpublikation
Reihe / Serie
Reihennummer
Jahrgang / Band
Ausgabe / Nummer
Seiten / Dauer
Patentnummer
Verlag / Herausgebende Institution
Verlagsort / Veranstaltungsort
Kassel
Auflage
Version
Programmiersprache
Abtretungsempfänger:in
Praxispartner:in/Auftraggeber:in
Zusammenfassung
The SNSF-funded Radio Explorations project engages with a digital archive of radio signals (SIGID Wiki) collected by radio enthusiasts. Radio Explorations operate within the continuum of societal and technological concerns, addressing the onto-epistemologies of radio signals: the process of their categorization and identification. Radio transmissions are hard to characterize because most signals do not have a static representation: especially when transmitting data, signals have different modes, phases, and other temporal variations. Starting from an unordered collection of recordings of different transmissions and their meta-data (frequency, bandwidth, mode, location), the aim of this project is to articulate signals' identities in terms of their own characteristics (rather than pre-existing ontologies). To this end, I examine the capacity of machine learning techniques to support identification of environmental radio transmissions. With artificial neural networks (ANN) of the self-organising map (SOM), I articulate a 'data observatory' that orders data on radio signals based on computable similarity. The 'data observatory' is a digital tool, a navigation apparatus which can be used to orient oneself in the vast landscape of data on radio transmissions. I do not propose to understand these identification processes as world making but, on the contrary, as arbitrary renderings of reality in the eyes of a machine, affirming inherent instability and flexibility of a signal's identity. By rendering signals commensurable in this way, I propose to take an active stance with regards to machine learning algorithms and expose a research interest from which we can learn and tell stories about signals.
Schlagwörter
Fachgebiet (DDC)
Veranstaltung
New Materialist Informatics
Startdatum der Ausstellung
Enddatum der Ausstellung
Startdatum der Konferenz
Enddatum der Konferenz
Datum der letzten Prüfung
ISBN
ISSN
Sprache
Englisch
Während FHNW Zugehörigkeit erstellt
Ja
Zukunftsfelder FHNW
Publikationsstatus
Veröffentlicht
Begutachtung
Peer-Review des Abstracts
Open Access-Status
Zitation
SAVIC, Selena, 2021. Radio Explorations: Computing Identities of Transmissions. New Materialist Informatics. Kassel. 25 März 2021. Verfügbar unter: https://doi.org/10.26041/fhnw-3720