Radio Explorations: Computing Identities of Transmissions
Loading...
Files
[pdf slides of the presentation]
Authors
Author (Corporation)
Publication date
25.03.2021
Typ of student thesis
Course of study
Type
06 - Presentation
Editors
Editor (Corporation)
Supervisor
Parent work
Special issue
DOI of the original publication
Series
Series number
Volume
Issue / Number
Pages / Duration
Patent number
Publisher / Publishing institution
Place of publication / Event location
Kassel
Edition
Version
Programming language
Assignee
Practice partner / Client
Abstract
The SNSF-funded Radio Explorations project engages with a digital archive of radio signals (SIGID Wiki) collected by radio enthusiasts. Radio Explorations operate within the continuum of societal and technological concerns, addressing the onto-epistemologies of radio signals: the process of their categorization and identification. Radio transmissions are hard to characterize because most signals do not have a static representation: especially when transmitting data, signals have different modes, phases, and other temporal variations. Starting from an unordered collection of recordings of different transmissions and their meta-data (frequency, bandwidth, mode, location), the aim of this project is to articulate signals' identities in terms of their own characteristics (rather than pre-existing ontologies). To this end, I examine the capacity of machine learning techniques to support identification of environmental radio transmissions. With artificial neural networks (ANN) of the self-organising map (SOM), I articulate a 'data observatory' that orders data on radio signals based on computable similarity. The 'data observatory' is a digital tool, a navigation apparatus which can be used to orient oneself in the vast landscape of data on radio transmissions. I do not propose to understand these identification processes as world making but, on the contrary, as arbitrary renderings of reality in the eyes of a machine, affirming inherent instability and flexibility of a signal's identity. By rendering signals commensurable in this way, I propose to take an active stance with regards to machine learning algorithms and expose a research interest from which we can learn and tell stories about signals.
Keywords
Subject (DDC)
Event
New Materialist Informatics
Exhibition start date
Exhibition end date
Conference start date
Conference end date
Date of the last check
ISBN
ISSN
Language
English
Created during FHNW affiliation
Yes
Strategic action fields FHNW
Publication status
Published
Review
Peer review of the abstract
Open access category
Citation
Savic, S. (2021, March 25). Radio Explorations: Computing Identities of Transmissions. New Materialist Informatics. https://doi.org/10.26041/fhnw-3720