Towards robust probabilistic maps in Deep Brain Stimulation. exploring the impact of patient number, stimulation counts, and statistical approaches

Typ
01A - Beitrag in wissenschaftlicher Zeitschrift
Herausgeber:innen
Herausgeber:in (Körperschaft)
Betreuer:in
Übergeordnetes Werk
Frontiers in Computational Neuroscience
Themenheft
Link
Reihe / Serie
Reihennummer
Jahrgang / Band
19
Ausgabe / Nummer
Seiten / Dauer
Patentnummer
Verlag / Herausgebende Institution
Frontiers Research Foundation
Verlagsort / Veranstaltungsort
Auflage
Version
Programmiersprache
Abtretungsempfänger:in
Praxispartner:in/Auftraggeber:in
Zusammenfassung
Introduction Probabilistic Stimulation Maps (PSMs) are increasingly employed to identify brain regions associated with optimal therapeutic outcomes in Deep Brain Stimulation (DBS). However, their reliability and generalizability are challenged by the limited size of most patient cohorts and the inherent variability introduced by different statistical methods and input data configurations. This study aimed to investigate the geometrical variability of Probabilistic Sweet Spots (PSS) as a function of both the number of patients (nPat) and the number of stimulations per patient (nStim), and to model a stability boundary defining the minimum data requirements for obtaining geometrically stable PSS. Methods Three statistical approaches–Bayesian t -test, Wilcoxon test with False Discovery Rate (FDR) correction, and Wilcoxon test with nonparametric permutation correction–were applied to two patient cohorts: a primary cohort of 36 patients undergoing DBS for Parkinson’s Disease (PD), and a secondary cohort of 61 patients treated for Essential Tremor (ET), used to assess generalizability. Stimulation test data was collected intra-operatively for the first cohort and post-operatively for the second one. Geometric stability was evaluated based on variability in PSS volume extent and centroid location. Results The analysis revealed a non-linear trade-off between nPat and nStim to yield stable PSS. A stability boundary was defined, representing the minimum combinations of nPat–nStim required for anatomically robust PSS. Among the tested methods, the Bayesian t -test achieved stability with smaller sample sizes (∼15 patients) and demonstrated a consistent performance across both cohorts. In contrast, the Wilcoxon-based methods showed variable behavior between cohorts, which differed in symptom type and testing phase (intra-operative testing vs. post-operative screening). Discussion The proposed PSS stability boundary provides a practical reference for designing DBS studies and stimulation screening protocols aimed at probabilistic mapping. The Bayesian t -test emerged as a reliable method across both cohorts, supporting its potential in studies with limited sample sizes and scenarios where the method needs to be readily generalized to varying symptoms. These findings underscore the importance of considering both cohort size and stimulation count in probabilistic DBS mapping and call for further investigation into method-specific sensitivities to clinical and procedural factors.
Schlagwörter
Projekt
Veranstaltung
Startdatum der Ausstellung
Enddatum der Ausstellung
Startdatum der Konferenz
Enddatum der Konferenz
Datum der letzten Prüfung
ISBN
ISSN
1662-5188
Sprache
Englisch
Während FHNW Zugehörigkeit erstellt
Ja
Zukunftsfelder FHNW
Publikationsstatus
Veröffentlicht
Begutachtung
Peer-Review der ganzen Publikation
Open Access-Status
Gold
Lizenz
'https://creativecommons.org/licenses/by/4.0/'
Zitation
Bucciarelli, V., Vogel, D., Wårdell, K., Coste, J., Blomstedt, P., Lemaire, J.-J., Guzman, R., Hemm-Ode, S., & Nordin, T. (2026). Towards robust probabilistic maps in Deep Brain Stimulation. exploring the impact of patient number, stimulation counts, and statistical approaches. Frontiers in Computational Neuroscience, 19. https://doi.org/10.3389/fncom.2025.1699192