Radio Explorations: Data Observatories of Environmental Radio Tranismissions

Vorschaubild
Dateien
[pdf slides of the presentation]
Autor:innen
Autor:in (Körperschaft)
Publikationsdatum
25.03.2021
Typ der Arbeit
Studiengang
Typ
06 - Präsentation
Herausgeber:innen
Herausgeber:in (Körperschaft)
Betreuer:in
Übergeordnetes Werk
Themenheft
DOI der Originalpublikation
Link
Reihe / Serie
Reihennummer
Jahrgang / Band
Ausgabe / Nummer
Seiten / Dauer
Patentnummer
Verlag / Herausgebende Institution
Verlagsort / Veranstaltungsort
Lausanne
Auflage
Version
Programmiersprache
Abtretungsempfänger:in
Praxispartner:in/Auftraggeber:in
Zusammenfassung
The way we order things informs the way we understand and interact with the world, or attempt to design it. A data-driven approach promises to treat the world with computational objectivity. Taken at face value, it rationalizes fairness and adequacy in ways inaccessible to humans; it also implies a certain loss of agency in deciding what matters and how. I propose to invert these concerns and engage with a data-driven approach to providing avenues for recognition of the entanglement of nature and culture, of order and disorder, of energy and matter. In the SNF-funded project Radio Explorations, I examine the capacity of machine learning techniques to support characterizing and identifying environmental radio transmissions. I work with a digital archive (Radio Signal Identification Guide Wiki, maintained by radio enthusiasts) reorganized as a 'digital observatory' that orders data on radio signals based on computable similarity. Through artificial neural networks (ANN) of the self-organising map (SOM), I expose ambient milieus of data as clusters that are found in the dataset. I use the observatory as a way finding tool, to navigate the vast landscape of radio signals, difficult to differentiate and identify even to signal processing experts. By rendering signals commensurable in this way, I articulate ways to study similarity between them, the implications of their discretization as digital audio recordings, and the difference between naturally occurring (atmospheric lightning discharges) and culturally encoded (telecommunications) signals. 'Data observatory' activates interests, reorganizes the archive so that we can decide where to go. While it remains clear that SOM is always only sorting high dimensional data in the space of possibilities that are always/already encoded, I am interested in identifying and characterizing radio signals as technical, cultural and natural phenomena all at once. With this project I hope to contribute to contemporary efforts in promoting digital literacy and seizing more democratic control over digital tools, while acknowledging their political implications.
Schlagwörter
Fachgebiet (DDC)
Projekt
Veranstaltung
Deep City: Climate change, democracy and the digital
Startdatum der Ausstellung
Enddatum der Ausstellung
Startdatum der Konferenz
Enddatum der Konferenz
Datum der letzten Prüfung
ISBN
ISSN
Sprache
Englisch
Während FHNW Zugehörigkeit erstellt
Ja
Zukunftsfelder FHNW
Publikationsstatus
Veröffentlicht
Begutachtung
Peer-Review des Abstracts
Open Access-Status
Zitation
SAVIC, Selena, 2021. Radio Explorations: Data Observatories of Environmental Radio Tranismissions. Deep City: Climate change, democracy and the digital. Lausanne. 25 März 2021. Verfügbar unter: https://doi.org/10.26041/fhnw-3721