Detecting Hidden Backdoors in Large Language Models
| dc.contributor.author | Peechat, Jibin Mathew | |
| dc.contributor.mentor | Christen, Patrik | |
| dc.contributor.partner | Hochschule für Wirtschaft FHNW, Institut für Wirtschaftsinformatik, Basel | |
| dc.date.accessioned | 2025-12-15T13:32:37Z | |
| dc.date.issued | 2025 | |
| dc.description.abstract | The adoption of LLMs in critical systems raises concerns regarding privacy, security and trust, particularly with regard to the risk of hidden backdoors — malicious triggers that cause covert data transfer or altered behaviour. Such threats are difficult to detect, especially when models are black-box systems with concealed triggers. This thesis addresses this issue by empirically evaluating the DeepSeek-R1 model family for potential backdoors during local execution. The aim is to identify anomalies and recommend safer deployment practices. | |
| dc.identifier.uri | https://irf.fhnw.ch/handle/11654/54704 | |
| dc.language.iso | en | |
| dc.publisher | Hochschule für Wirtschaft FHNW | |
| dc.spatial | Brugg-Windisch | |
| dc.subject.ddc | 330 - Wirtschaft | |
| dc.title | Detecting Hidden Backdoors in Large Language Models | |
| dc.type | 11 - Studentische Arbeit | |
| dspace.entity.type | Publication | |
| fhnw.InventedHere | Yes | |
| fhnw.StudentsWorkType | Bachelor | |
| fhnw.affiliation.hochschule | Hochschule für Wirtschaft FHNW | de_CH |
| fhnw.affiliation.institut | Bachelor of Science | de_CH |
| relation.isMentorOfPublication | d6fa5f05-5123-4d2f-8e74-79adfe54acc7 | |
| relation.isMentorOfPublication.latestForDiscovery | d6fa5f05-5123-4d2f-8e74-79adfe54acc7 |