Assessing the biodegradation of btex and stress response in a bio-permeable reactive barrier using compound-specific isotope analysis

dc.accessRightsAnonymous*
dc.contributor.authorChen, Tianyu
dc.contributor.authorWu, Yan
dc.contributor.authorWang, Jinnan
dc.contributor.authorCorvini, Philippe
dc.date.accessioned2022-10-12T09:35:02Z
dc.date.available2022-10-12T09:35:02Z
dc.date.issued2022-07-20
dc.description.abstractBy using compound-specific isotope analysis (CSIA) in combination with high-throughput sequencing analysis (HTS), we successfully evaluated the benzene and toluene biodegradation in a bio-permeable reactive barrier (bio-PRB) and the stress response of the microbial community. Under stress conditions, a greater decline in the biodegradation rate of BTEX was observed compared with the apparent removal rate. Both an increase in the influent concentration and the addition of trichloroethylene (TCE) inhibited benzene biodegradation, while toluene biodegradation was inhibited by TCE. Regarding the stress response, the relative abundance of the dominant bacterial community responsible for the biodegradation of BTEX increased with the influent concentration. However, the dominant bacterial community did not change, and its relative abundance was restored after the influent concentration decreased. On the contrary, the addition of TCE significantly changed the bacterial community, with Aminicenantes becoming the dominant phyla for co-metabolizing TCE and BTEX. Thus, TCE had a more significant influence on the bio-PRB than an increasing influent concentration, although these two stress conditions showed a similar degree of influence on the apparent removal rate of benzene and toluene. The present work not only provides a new method for accurately evaluating the biodegradation performance and microbial community in a bio-PRB, but also expands the application of compound-specific isotope analysis in the biological treatment of wastewater.en_US
dc.identifier.doi10.3390/ijerph19148800
dc.identifier.issn1661-7827
dc.identifier.issn1660-4601
dc.identifier.urihttps://irf.fhnw.ch/handle/11654/33933
dc.identifier.urihttps://doi.org/10.26041/fhnw-4320
dc.issue14en_US
dc.language.isoenen_US
dc.publisherMDPIen_US
dc.relation.ispartofInternational Journal of Environmental Research and Public Healthen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.spatialBaselen_US
dc.subjectbio-permeable reactive barrieren_US
dc.subjectbiodegradationen_US
dc.subjectBTEXen_US
dc.subjectcompound-specific isotope analysisen_US
dc.subjecthigh-throughput sequencing analysisen_US
dc.subject.ddc500 - Naturwissenschaftenen_US
dc.titleAssessing the biodegradation of btex and stress response in a bio-permeable reactive barrier using compound-specific isotope analysisen_US
dc.type01A - Beitrag in wissenschaftlicher Zeitschrift
dc.volume19en_US
dspace.entity.typePublication
fhnw.InventedHereYesen_US
fhnw.IsStudentsWorknoen_US
fhnw.ReviewTypeAnonymous ex ante peer review of a complete publicationen_US
fhnw.affiliation.hochschuleHochschule für Life Sciences FHNWde_CH
fhnw.affiliation.institutInstitut für Ecopreneurshipde_CH
fhnw.openAccessCategoryGolden_US
fhnw.publicationStatePublisheden_US
relation.isAuthorOfPublicationb70a3a4f-d739-4ef3-84c8-cab8e28c05c7
relation.isAuthorOfPublication.latestForDiscoveryb70a3a4f-d739-4ef3-84c8-cab8e28c05c7
Dateien

Originalbündel

Gerade angezeigt 1 - 1 von 1
Vorschaubild
Name:
ijerph-19-08800.pdf
Größe:
6.06 MB
Format:
Adobe Portable Document Format
Beschreibung:

Lizenzbündel

Gerade angezeigt 1 - 1 von 1
Kein Vorschaubild vorhanden
Name:
license.txt
Größe:
1.37 KB
Format:
Item-specific license agreed upon to submission
Beschreibung: