Simulation of synthetic complex data. The R package simPop

Vorschaubild
Autor:in (Körperschaft)
Publikationsdatum
2017
Typ der Arbeit
Studiengang
Typ
01A - Beitrag in wissenschaftlicher Zeitschrift
Herausgeber:innen
Herausgeber:in (Körperschaft)
Betreuer:in
Übergeordnetes Werk
Journal of Statistical Software
Themenheft
DOI der Originalpublikation
Link
Reihe / Serie
Reihennummer
Jahrgang / Band
79
Ausgabe / Nummer
10
Seiten / Dauer
1-38
Patentnummer
Verlag / Herausgebende Institution
UCLA, Dept. of Statistics
Verlagsort / Veranstaltungsort
Auflage
Version
Programmiersprache
Abtretungsempfänger:in
Praxispartner:in/Auftraggeber:in
Zusammenfassung
The production of synthetic datasets has been proposed as a statistical disclosure control solution to generate public use files out of protected data, and as a tool to create "augmented datasets" to serve as input for micro-simulation models. Synthetic data have become an important instrument for ex-ante assessments of policy impact. The performance and acceptability of such a tool relies heavily on the quality of the synthetic populations, i.e., on the statistical similarity between the synthetic and the true population of interest. Multiple approaches and tools have been developed to generate synthetic data. These approaches can be categorized into three main groups: synthetic reconstruction, combinatorial optimization, and model-based generation. We provide in this paper a brief overview of these approaches, and introduce simPop, an open source data synthesizer. simPop is a user-friendly R package based on a modular object-oriented concept. It provides a highly optimized S4 class implementation of various methods, including calibration by iterative proportional fitting and simulated annealing, and modeling or data fusion by logistic regression. We demonstrate the use of simPop by creating a synthetic population of Austria, and report on the utility of the resulting data. We conclude with suggestions for further development of the package.
Schlagwörter
Fachgebiet (DDC)
330 - Wirtschaft
510 - Mathematik
Projekt
Veranstaltung
Startdatum der Ausstellung
Enddatum der Ausstellung
Startdatum der Konferenz
Enddatum der Konferenz
Datum der letzten Prüfung
ISBN
ISSN
1548-7660
Sprache
Englisch
Während FHNW Zugehörigkeit erstellt
Nein
Zukunftsfelder FHNW
Publikationsstatus
Veröffentlicht
Begutachtung
Peer-Review der ganzen Publikation
Open Access-Status
Diamond
Lizenz
'https://creativecommons.org/licenses/by/4.0/'
Zitation
TEMPL, Matthias, Bernhard MEINDL, Alexander KOWARIK und Olivier DUPRIEZ, 2017. Simulation of synthetic complex data. The R package simPop. Journal of Statistical Software. 2017. Bd. 79, Nr. 10, S. 1–38. DOI 10.18637/jss.v079.i10. Verfügbar unter: https://doi.org/10.26041/fhnw-11067