Novel Titanium Nanospike Structure Using Low-Energy Helium Ion Bombardment for the Transgingival Part of a Dental Implant

Lade...
Vorschaubild
Autor:innen
Mukaddam, Khaled
Astasov-Frauenhoffer, Monika
Fasler-Kan, Elizaveta
Marot, Laurent
Kisiel, Marcin
Steiner, Roland
Sanchez, Fabien
Meyer, Ernst
Bornstein, Michael M.
Kühl, Sebastian
Autor:in (Körperschaft)
Publikationsdatum
24.03.2022
Typ der Arbeit
Studiengang
Typ
01A - Beitrag in wissenschaftlicher Zeitschrift
Herausgeber:innen
Herausgeber:in (Körperschaft)
Betreuer:in
Übergeordnetes Werk
Nanomaterials
Themenheft
DOI der Originalpublikation
Link
Reihe / Serie
Reihennummer
Jahrgang / Band
12
Ausgabe / Nummer
7
Seiten / Dauer
Patentnummer
Verlag / Herausgebende Institution
MDPI
Verlagsort / Veranstaltungsort
Basel
Auflage
Version
Programmiersprache
Abtretungsempfänger:in
Praxispartner:in/Auftraggeber:in
Zusammenfassung
Aim(s): The aim of the study was to fabricate a nanospike surface on a titanium alloy surface using a newly established method of low-energy helium ion bombardment. Various methods to achieve nanospike formation on titanium have been introduced recently, and their antibacterial properties have been mainly investigated with respect to Escherichia coli and Staphylococcus aureus. Oral pathogens such as Porphyromonas gingivalis play an important role in the development of peri-implantitis. For that reason, the antibacterial properties of the novel, nanostructured titanium surface against P. gingivalis were assessed, and a possible effect on the viability of gingival fibroblasts was evaluated. Materials and Methods: Helium sputtering was employed for developing titanium surfaces with nanospikes of 500 nm (ND) in height; commercially available smooth-machined (MD) and sandblasted and acid-etched titanium disks (SLA) were used as controls. Surface structure characterization was performed through scanning electron microscopy (SEM) and atomic force microscopy (AFM). Following incubation with P. gingivalis, antibacterial properties were determined via conventional culturing and SEM. Additionally, the viability of human gingival fibroblasts (HGFs) was tested through MTT assay, and cell morphology was assessed through SEM. Results: SEM images confirmed the successful establishment of a nanospike surface with required heights, albeit with heterogeneity. AFM images of the 500 nm nanospike surface revealed that the roughness is dominated by large-scale hills and valleys. For frame sizes of 5 × 5 μm and smaller, the average roughness is dominated by the height of the titanium spikes. ND successfully induces dysmorphisms within P. gingivalis cultures following the incubation period, while conventional culturing reveals a 17% and 20% reduction for ND compared to MD and SLA, respectively. Moreover, the nanospike surfaces did not affect the viability of human growth fibroblasts despite their sharp surface. Conclusion(s): This study successfully developed a novel titanium-nanospike-based structuration technique for titanium surfaces. In addition, the nanospikes did not hinder gingival fibroblast viability. Enhanced antimicrobial effects for such a novel nanospike-based resurfacing technique can be achieved through further optimizations for nanospike spacing and height parameters.
Schlagwörter
antibacterial, titanium, nanospike, surface, gingival fibroblast
Fachgebiet (DDC)
500 - Naturwissenschaften
Projekt
Veranstaltung
Startdatum der Ausstellung
Enddatum der Ausstellung
Startdatum der Konferenz
Enddatum der Konferenz
Datum der letzten Prüfung
ISBN
ISSN
2079-4991
Sprache
Englisch
Während FHNW Zugehörigkeit erstellt
Ja
Publikationsstatus
Veröffentlicht
Begutachtung
Peer-Review der ganzen Publikation
Open Access-Status
Gold
Lizenz
'https://creativecommons.org/licenses/by/4.0/'
Zitation
MUKADDAM, Khaled, Monika ASTASOV-FRAUENHOFFER, Elizaveta FASLER-KAN, Laurent MAROT, Marcin KISIEL, Roland STEINER, Fabien SANCHEZ, Ernst MEYER, Michael M. BORNSTEIN, Sebastian KÜHL und Joachim KÖSER, 2022. Novel Titanium Nanospike Structure Using Low-Energy Helium Ion Bombardment for the Transgingival Part of a Dental Implant. Nanomaterials. 24 März 2022. Bd. 12, Nr. 7. DOI 10.3390/nano12071065. Verfügbar unter: https://doi.org/10.3390/nano12071065