Prediction of Diagnosis Related Groups classification for Medical Services
Vorschaubild nicht verfügbar
Autor:innen
Autor:in (Körperschaft)
Publikationsdatum
2021
Typ der Arbeit
Master
Studiengang
Sammlung
Typ
11 - Studentische Arbeit
Herausgeber:innen
Herausgeber:in (Körperschaft)
Betreuer:in
Übergeordnetes Werk
Themenheft
DOI der Originalpublikation
Link
Reihe / Serie
Reihennummer
Jahrgang / Band
Ausgabe / Nummer
Seiten / Dauer
Patentnummer
Verlag / Herausgebende Institution
Hochschule für Wirtschaft FHNW
Verlagsort / Veranstaltungsort
Olten
Auflage
Version
Programmiersprache
Abtretungsempfänger:in
Praxispartner:in/Auftraggeber:in
Zusammenfassung
The introduction of diagnosis-related groups (DRG) in the medical sector, the cost capping of prices, led to the fact that treatments often have a low margin or are not cost-covering. For this reason, it is extremely important that all services subsequently provided are also charged to the patient. This thesis has been completed in cooperation with the Heuberger Eye Clinic and the software supplier for the daily business MedicalDesktop. Currently, the notes of the medical staff, contained in the MedicalDesktop software, are used to create the patient invoice. This step requires specific medical knowledge to understand both the notes and the DRGs, as a correct allocation has to be made. To support the staff in this task, a machine learning model is developed.The aim of this thesis is to determine whether a recommendation for the DRG allocation can be made on the basis of unstructured notes as well as structured information (e.g., measurement of the sphere). For this purpose, a machine learning model is developed and subsequently optimized. The results show that a recommendation by the model can support the staff helpfully. The results indicate that additional revenue can be generated with the help of the model. On this basis, the hypothesis can be confirmed that unstructured and structured data can improve the accuracy and completeness of invoices.
Schlagwörter
Fachgebiet (DDC)
330 - Wirtschaft
Veranstaltung
Startdatum der Ausstellung
Enddatum der Ausstellung
Startdatum der Konferenz
Enddatum der Konferenz
Datum der letzten Prüfung
ISBN
ISSN
Sprache
Englisch
Während FHNW Zugehörigkeit erstellt
Ja
Zukunftsfelder FHNW
Publikationsstatus
Begutachtung
Open Access-Status
Lizenz
Zitation
KÜNZI, Richard, 2021. Prediction of Diagnosis Related Groups classification for Medical Services. Olten: Hochschule für Wirtschaft FHNW. Verfügbar unter: https://irf.fhnw.ch/handle/11654/40324