Large language models: Expectations for semantics-driven systems engineering
Kein Vorschaubild vorhanden
Autor:in (Körperschaft)
Publikationsdatum
2024
Typ der Arbeit
Studiengang
Typ
01A - Beitrag in wissenschaftlicher Zeitschrift
Herausgeber:innen
Herausgeber:in (Körperschaft)
Betreuer:in
Übergeordnetes Werk
Data & Knowledge Engineering
Themenheft
DOI der Originalpublikation
Link
Reihe / Serie
Reihennummer
Jahrgang / Band
152
Ausgabe / Nummer
Seiten / Dauer
102324
Patentnummer
Verlag / Herausgebende Institution
Elsevier
Verlagsort / Veranstaltungsort
Amsterdam
Auflage
Version
Programmiersprache
Abtretungsempfänger:in
Praxispartner:in/Auftraggeber:in
Zusammenfassung
The hype of Large Language Models manifests in disruptions, expectations or concerns in scientific communities that have focused for a long time on design-oriented research. The current experiences with Large Language Models and associated products (e.g. ChatGPT) lead to diverse positions regarding the foreseeable evolution of such products from the point of view of scholars who have been working with designed abstractions for most of their careers - typically relying on deterministic design decisions to ensure systems and automation reliability. Such expectations are collected in this paper in relation to a flavor of systems engineering that relies on explicit knowledge structures, introduced here as “semantics-driven systems engineering”. The paper was motivated by the panel discussion that took place at CAiSE 2023 in Zaragoza, Spain, during the workshop on Knowledge Graphs for Semantics-driven Systems Engineering (KG4SDSE). The workshop brought together Conceptual Modeling researchers with an interest in specific applications of Knowledge Graphs and the semantic enrichment benefits they can bring to systems engineering. The panel context and consensus are summarized at the end of the paper, preceded by a proposed research agenda considering the expressed positions.
Schlagwörter
Fachgebiet (DDC)
330 - Wirtschaft
Veranstaltung
Startdatum der Ausstellung
Enddatum der Ausstellung
Startdatum der Konferenz
Enddatum der Konferenz
Datum der letzten Prüfung
ISBN
ISSN
0169-023X
1872-6933
1872-6933
Sprache
Englisch
Während FHNW Zugehörigkeit erstellt
Ja
Zukunftsfelder FHNW
Publikationsstatus
Veröffentlicht
Begutachtung
Peer-Review der ganzen Publikation
Open Access-Status
Closed
Lizenz
Zitation
BUCHMANN, Robert, Johann EDER, Hans-Georg FILL, Ulrich FRANK, Dimitris KARAGIANNIS, Emanuele LAURENZI, John MYLOPOULOS, Dimitris PLEXOUSAKIS und Maribel Yasmina SANTOS, 2024. Large language models: Expectations for semantics-driven systems engineering. Data & Knowledge Engineering. 2024. Bd. 152, S. 102324. DOI 10.1016/j.datak.2024.102324. Verfügbar unter: https://irf.fhnw.ch/handle/11654/48427