New Scale-up Technologies for Hydrogenation Reactions in Multipurpose Pharmaceutical Production Plants

dc.accessRightsAnonymous*
dc.contributor.authorFurrer, Thierry
dc.contributor.authorMüller, Benedikt
dc.contributor.authorHasler, Christoph
dc.contributor.authorBerger, Bernhard
dc.contributor.authorLevis, Michael Karl
dc.contributor.authorZogg, Andreas
dc.date.accessioned2021-11-29T08:18:30Z
dc.date.available2021-11-29T08:18:30Z
dc.date.issued2021
dc.description.abstractThe classical scale-up approach for hydrogenation reaction processes usually includes numerous laboratory- and pilot-scale experiments. With a novel scale-up strategy, a significant number of these experiments may be replaced by modern computational simulations in combination with scale-down experiments. With only a few laboratory-scale experiments and information about the production-scale reactor, a chemical process model is developed. This computational model can be used to simulate the production-scale process with a range of different process parameters. Those simulations are then validated by only a few experiments in an advanced scale-down reactor. The scale-down reactor has to be geometrically identical to the corresponding production-scale reactor and should show a similar mass transfer behaviour. Closest similarity in terms of heat transfer behaviour is ensured by a sophisticated 3D-printed heating/cooling finger, offering the same heat exchange area per volume and overall heat-transfer coefficient as in production-scale. The proposed scale-up strategy and the custom-designed scale-down reactor will be tested by proof of concept with model reactions. Those results will be described in a future publication. This project is an excellent example of a collaboration between academia and industry, which was funded by the Aargau Research Fund. The interest of academia is to study and understand all physical and chemical processes involved, whereas industry is interested in generating a robust and simple to use tool to improve scale-up and make reliable predictions.en_US
dc.identifier.doihttps://doi.org/10.2533/chimia.2021.948
dc.identifier.issn2673-2424
dc.identifier.issn0009-4293
dc.identifier.urihttp://dx.doi.org/10.26041/fhnw-3938
dc.identifier.urihttps://irf.fhnw.ch/handle/11654/32770.1
dc.issue11en_US
dc.language.isoenen_US
dc.publisherSchweizerische Chemische Gesellschaften_US
dc.relation.ispartofChimiaen_US
dc.rightsCC0 1.0 Universal*
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/en_US
dc.spatialBernen_US
dc.subjectAgitated Vesselen_US
dc.subjectHydrogenationen_US
dc.subjectProcess Modellingen_US
dc.subjectQuality By Design (QBD)en_US
dc.subjectScale-Up / Scale-Downen_US
dc.titleNew Scale-up Technologies for Hydrogenation Reactions in Multipurpose Pharmaceutical Production Plantsen_US
dc.type01A - Beitrag in wissenschaftlicher Zeitschrift
dc.volume75en_US
fhnw.InventedHereYesen_US
fhnw.IsStudentsWorknoen_US
fhnw.ReviewTypeAnonymous ex ante peer review of a complete publicationen_US
fhnw.openAccessCategoryDiamonden_US
fhnw.pagination948-956en_US
fhnw.publicationStatePublisheden_US
Dateien

Originalbündel

Gerade angezeigt 1 - 1 von 1
Vorschaubild
Name:
Furrer et al. - 2021 - New Scale-up Technologies for Hydrogenation Reacti.pdf
Größe:
945.59 KB
Format:
Adobe Portable Document Format
Beschreibung:

Versionsgeschichte

Gerade angezeigt 1 - 2 von 2
VersionDatumZusammenfassung
2023-05-08 06:30:02
Optimierung Bildqualität
1*
2021-11-29 08:18:30
* Ausgewählte Version