Auflistung nach Autor:in "Streit, Niklaus"
Gerade angezeigt 1 - 6 von 6
Treffer pro Seite
Sortieroptionen
- PublikationAbsorption of light by soot particles: determination of the absorption coefficient by means of aethalometers(Elsevier, 10/2003) Weingartner, Ernest; Saathoff, Harald; Schnaiter, Martin; Streit, Niklaus; Bitnar, B.; Baltensperger, Urs [in: Journal of Aerosol Science]01A - Beitrag in wissenschaftlicher Zeitschrift
- PublikationCharacterization of size-fractionated aerosol from the Jungfraujoch (3580 m asl) using total reflection x-ray fluorescence (TXRF)(Taylor & Francis, 22.09.2000) Streit, Niklaus; Weingartner, Ernest; Zellweger, Christoph; Schwikowski, Margit; Gäggeler, Heinz W.; Baltensperger, Urs [in: International Journal of Environmental Analytical Chemistry]During three field campaigns at the Jungfraujoch High Alpine Research Station, Switzerland, size-fractionated aerosol was collected using a cascade impactor. The particles were impacted on silicon oil-coated quartz sampling substrates. The actual analysis was then performed directly on these quartz sampling substrates using total reflection X-ray fluorescence. The resulting size distributions of 16 elements (S, Cl, K, Ca, Ti, Mn, Fe, Cu, Zn, Se, Br, Rb, Sr, Y, Zr, Pb) were investigated to determine the best cut-off diameter to distinguish between geogenic and anthropogenic particles. The obtained cut-off diameter of 1 μm is an important parameter in the current world-wide measurements under the auspices of the World Meteorological Organization's Global Atmosphere Watch aerosol project.01A - Beitrag in wissenschaftlicher Zeitschrift
- PublikationSeparation of volatile and non-volatile aerosol fractions by thermodesorption. instrumental development and applications(Elsevier, 04/2001) Burtscher, Heinz; Baltensperger, Urs; Bukowiecki, Nicolas; Cohn, P.; Hüglin, Christoph; Mohr, Martin; Matter, Urs; Nyeki, Stephan; Schmatloch, Volker; Streit, Niklaus; Weingartner, Ernest [in: Journal of Aerosol Science]An instrument to remove volatile material from aerosol particles by thermal desorption is presented. The thermodesorber consists of a heated tube, where volatile material is desorbed from the particles, and a water- or air-cooled tube, consisting of activated charcoal. This last tube removes desorbed material and thus prevents it from re-adsorbing onto particles. Although designed for measuring particulate emissions from combustion processes it can also be applied to atmospheric aerosols. After theoretical and experimental determination of thermodesorber operating characteristics (temperature profile, losses, removal of desorbed material), examples of applications in several fields are given. Examples of atmospheric measurements at several remote and urban sites are presented. In combustion technology, the thermodesorber is applied to remove all volatile materials, allowing separation of volatile species and the non-volatile core (mainly elemental carbon) of combustion particles. Finally, the thermodesorber is used to study adsorption and desorption processes of polycyclic aromatic hydrocarbons on particles.01A - Beitrag in wissenschaftlicher Zeitschrift
- PublikationSummertime NOy speciation at the Jungfraujoch, 3580 m above sea level, Switzerland(Wiley, 16.03.2000) Zellweger, Christoph; Ammann, Markus; Buchmann, Brigitte; Hofer, Patrick; Lugauer, Matthias; Rüttimann, Ralph; Streit, Niklaus; Weingartner, Ernest; Baltensperger, Urs [in: Journal of Geophysical Research: Atmospheres]During summer 1997, speciated reactive nitrogen (NO, NO2, peroxyacetyl nitrate (PAN), HNO3, and particulate nitrate) was measured in conjunction with total reactive nitrogen (NOy) at the high-alpine research station Jungfraujoch (JFJ), 3580 m above sea level (asl). The individually measured NOy components averaged to 82% of total NOy. PAN was the most abundant reactive nitrogen compound and composed on average 36% of NOy, followed by NOx, (22%), particulate nitrate (17%), and HNO3 (7%). The NOx/NOy ratio averaged 0.25, but significantly lower values (0.15–0.20) were observed in the presence of high NOy mixing ratios. A classification of the data by synoptic weather conditions indicated that thermally driven vertical transport has a strong impact on the mixing ratios measured at the JFJ during summer. A strong diurnal cycle with maximum mixing ratios in the late afternoon was observed for convective days with north-westerly advection at 500 hPa. In contrast, during a period of convective days with a wind speed below 7.5 m/s at 500 hPa, no obvious diurnal cycle was observed. Under these meteorological conditions the convective boundary layer can be significantly higher over the Alps (i.e., around 4 km asl) than over the surrounding lowlands. Subsequent advection may finally result in the export of reactive nitrogen reservoir compounds to the free troposphere and hence influence global atmospheric chemistry.01A - Beitrag in wissenschaftlicher Zeitschrift
- PublikationThe background aerosol size distribution in the free troposphere. An analysis of the annual cycle at a high‐alpine site(Wiley, 01.12.1998) Nyeki, Stephan; Li, F.; Weingartner, Ernest; Streit, Niklaus; Colbeck, Ian; Gäggeler, Heinz W.; Baltensperger, Urs [in: Journal of Geophysical Research: Atmospheres]Measurements during free tropospheric (FT) and planetary boundary layer (PBL) conditions were conducted over an annual cycle at the Jungfraujoch high-Alpine research station (3454 m), Switzerland, in order to establish diurnal and seasonal cycles of the background continental aerosol over central Europe. Using a condensation nucleus counter (TSI 3025) and an optical particle counter (PMS Las-X) from June 1996 to May 1997, the following were determined: (1) accumulation mode lognormal parameters and (2) number concentrations for the nucleation (diameter d < 0.1 μm), accumulation (0.1 ≤ d ≤ 1.0 μm), and part of the coarse (1.0 < d ≤ 7.5 μm, designated “coarse”) modes. Lognormal parameters were found to be similar for FT and PBL conditions, and exhibited a weak seasonality in geometric median diameter dGN =0.13 and 0.10 μm, and standard deviation σG = 1.73 and 1.64 for summer and winter, respectively. Aerosol number concentrations in each mode exhibited a more pronounced seasonality, with FT concentrations being lower than those for PBL. Summer and winter FT median concentrations for the nucleation, accumulation, and “coarse” modes were 405 and 195 cmˉ³, 114 and 26 cmˉ³, and 0.052 and 0.014 cmˉ³, respectively. These results provide tentative support of other long-term observations that the FT background aerosol mode appears to vary mainly in concentration rather than accumulation mode shape. Further analysis indicated that only the total concentration in each mode varied with weather type and a classification between that of a remote continental and polar aerosol model was found for the Jungfraujoch.01A - Beitrag in wissenschaftlicher Zeitschrift
- PublikationUrban and rural aerosol characterization of summer smog events during the PIPAPO field campaign in Milan, Italy(Wiley, 2002) Baltensperger, Urs; Streit, Niklaus; Weingartner, Ernest; Nyeki, Stephan; Prévôt, André S.H.; Van Dingenen, Rita; Virkkula, Aki; Putaud, Jean-Philippe; Even, A.; ten Brink, Harry; Blatter, Andreas; Neftel, Albrecht; Gäggeler, Heinz W. [in: Journal of Geophysical Research: Atmospheres]A comprehensive range of aerosol parameters was measured at an urban and a rural site in the Milan, Italy metropolitan region during summer smog events in summer 1998. Measurements were performed as part of the Pianura Padana Produzione di Ozono (PIPAPO) field campaign to determine the sensitivity of O3 production to NOₓ and volatile organic carbon concentrations at several ground stations. Primary aerosol parameters (i.e., direct emissions) such as aerosol black carbon showed a distinct diurnal variation with maxima at about 0000 and 0800 central European summer time (CEST), in contrast to secondary aerosol parameters such as sulfate and nitrate. Aerosol number size distributions were measured under ambient conditions as well as after conditioning with volatility and hygroscopicity systems. A mode at d = 20–30 nm in the number concentration was found at 0800 CEST and exhibited high volatility at 110°C (∼80% volume lost upon heating) but no hygroscopic behavior. Based on these measurements, small particles (d < 40 nm) are thought to consist mainly of hydrophobic particulate organic matter, rather than soot or H2SO4 aerosols. Two distinct hygroscopic modes with average growth factors d/d0 ∼ 1.02 and 1.21–1.28 were found for particles with dry (relative humidity of <30%) diameters d0 = 50–200 nm. Submicrometer aerosols exhibited lower volatility at the rural than at the urban site, which is attributed to additional particulate mass produced by secondary particle formation.01A - Beitrag in wissenschaftlicher Zeitschrift