Institut für Pharma Technology

Dauerhafte URI für die Sammlunghttps://irf.fhnw.ch/handle/11654/25

Listen

Ergebnisse nach Hochschule und Institut

Gerade angezeigt 1 - 2 von 2
  • Publikation
    Saponins from saffron corms inhibit the gene expression and secretion of pro-inflammatory cytokines
    (American Chemical Society, 18.02.2021) Keller, Morris; Fankhauser, Sarah; Giezendanner, Noreen; König, Michelle; Keresztes, Franziska; Danton, Ombeline; Fertig, Orlando; Marcourt, Laurence; Butterweck, Veronika; Potterat, Olivier; Hamburger, Matthias
    Corms are obtained as a byproduct during the cultivation of saffron (Crocus sativus). In a project aimed at the valorization of this waste product, we observed that a 70% EtOH extract of the corms and a sugar-depleted MeOH fraction of the extract inhibited the TNF-α/IFN-γ-induced secretion and gene expression of the chemokines IL-8, MCP-1, and RANTES in human HaCaT cells. The effects were in part stronger than those of the positive control hydrocortisone. For preparative isolation, the 70% EtOH extract was partitioned between n-BuOH and water. Separation of the n-BuOH-soluble fraction by centrifugal partition chromatography, followed by preparative and semipreparative HPLC, afforded a series of bidesmosidic glycosides of echinocystic acid bearing a 3,16-dihydroxy-10-oxo-hexadecanoic acid residue attached to the glycosidic moiety at C-28. They include azafrines 1 and 2, previously reported in saffron, and eight new congeners named azafrines 3–10. Saffron saponins significantly inhibited TNF-α/IFN-γ-induced secretion of RANTES in human HaCaT cells at 1 μM (p < 0.001). Some of them further lowered TNF-α/IFN-γ-induced gene expression.
    01A - Beitrag in wissenschaftlicher Zeitschrift
  • Publikation
    Saffron Flower Extract Promotes Scratch Wound Closure of Keratinocytes and Enhances VEGF Production
    (Thieme, 2017) Verjee, Sheela; Garo, Eliane; Pelaez, Sarah; Fertig, Orlando; Hamburger, Matthias; Butterweck, Veronika
    During saffron (Crocus sativus) spice production, large amounts of floral biowaste are generated. It was the aim of this study to develop a value-added product from saffron floral biowaste to be used as a natural cosmetic ingredient. HPLC-PDA-MS analysis of saffron flower extracts revealed the presence of flavonols with the highest amounts in the acetone extract. Kaempferol-3-O-sophoroside was identified as the main flavonoid in the acetone extract (saffron flower acetone extract). Saffron flower acetone extract and kaempferol-3-O-sophoroside were tested in HaCaT cells for potential effects on cell migration, proliferation, and for anti-inflammatory properties. Saffron flower acetone extract concentration dependently (50–200 µg/mL) augmented cell proliferation, as indicated by an increased BrdU-incorporation, while kaempferol-3-O-sophoroside (1–50 µM) had no effect. Furthermore, treatment of HaCaT cells with saffron flower acetone extract, but not with kaempferol-3-O-sophoroside, concentration-dependently increased vascular endothelial growth factor secretion (control 49.72 pg/mL vs. saffron flower acetone extract at 200 µg/mL 218.60 pg/mL). Cell migration was determined using time-lapse microscopy and a modification of the scratch-wound assay in which saffron flower acetone extract significantly improved wound closure compared to the untreated control. Overproduction of the proinflammatory cytokines interleukin-8 and interleukin-6 in HaCaT cells was induced by TNF-α. Kaempferol-3-O-sophoroside (10–50 µM), but not saffron flower acetone extract, inhibited TNF-α-induced IL-8 secretion. The effect was comparable to 10 µM hydrocortisone (positive control). Interestingly, saffron flower acetone extract further increased IL-6 levels in TNF-α-treated HaCaT cells in a concentration-dependent manner. In summary, the pronounced wound healing properties of saffron flower acetone extract present a promising application for the cosmetic industry.
    01A - Beitrag in wissenschaftlicher Zeitschrift