lnstitut für Sensorik und Elektronik
Dauerhafte URI für die Sammlunghttps://irf.fhnw.ch/handle/11654/28068
Listen
Publikation A dual-wavelength photothermal aerosol absorption monitor. Design, calibration and performance(Copernicus, 2022) Drinovec, Luka; Jagodič, Uroš; Pirker, Luka; Škarabot, Miha; Kurtjak, Mario; Vidović, Kristijan; Ferrero, Luca; Visser, Bradley; Röhrbein, Jannis; Weingartner, Ernest; Kalbermatter, Daniel M.; Vasilatou, Konstantina; Bühlmann, Tobias; Pascale, Celine; Müller, Thomas; Wiedensohler, Alfred; Močnik, GrišaThere exists a lack of aerosol absorption measurement techniques with low uncertainties and without artefacts. We have developed the two-wavelength Photothermal Aerosol Absorption Monitor (PTAAM-2λ), which measures the aerosol absorption coefficient at 532 and 1064 nm. Here we describe its design, calibration and mode of operation and evaluate its applicability, limits and uncertainties. The 532 nm channel was calibrated with ∼ 1 µmol mol−1 NO2, whereas the 1064 nm channel was calibrated using measured size distribution spectra of nigrosin particles and a Mie calculation. Since the aerosolized nigrosin used for calibration was dry, we determined the imaginary part of the refractive index of nigrosin from the absorbance measurements on solid thin film samples. The obtained refractive index differed considerably from the one determined using aqueous nigrosin solution. PTAAM-2λ has no scattering artefact and features very low uncertainties: 4 % and 6 % for the absorption coefficient at 532 and 1064 nm, respectively, and 9 % for the absorption Ångström exponent. The artefact-free nature of the measurement method allowed us to investigate the artefacts of filter photometers. Both the Aethalometer AE33 and CLAP suffer from cross sensitivity to scattering – this scattering artefact is most pronounced for particles smaller than 70 nm. We observed a strong dependence of the filter multiple scattering parameter on the particle size in the 100–500 nm range. The results from the winter ambient campaign in Ljubljana showed similar multiple scattering parameter values for ambient aerosols and laboratory experiments. The spectral dependence of this parameter resulted in AE33 reporting the absorption Ångström exponent for different soot samples with values biased 0.23–0.35 higher than the PTAAM-2λ measurement. Photothermal interferometry is a promising method for reference aerosol absorption measurements.01A - Beitrag in wissenschaftlicher ZeitschriftPublikation A European aerosol phenomenology - 6. Scattering properties of atmospheric aerosol particles from 28 ACTRIS sites(Copernicus, 2018) Pandolfi, Marco; Alados-Arboledas, Lucas; Alastuey, Andrés; Andrade, Marcos; Angelov, Christo; Artiñano, Begoña; Backman, John; Baltensperger, Urs; Bonasoni, Paolo; Bukowiecki, Nicolas; Collaud Coen, Martine; Conil, Sébastien; Coz, Esther; Crenn, Vincent; Dudoitis, Vadimas; Ealo, Marina; Eleftheriadis, Kostas; Favez, Olivier; Fetfatzis, Prodromos; Fiebig, Markus; Flentje, Harald; Ginot, Patrick; Gysel, Martin; Henzing, Bas; Hoffer, Andras; Holubova Smejkalova, Adela; Kalapov, Ivo; Kalivitis, Nikos; Kouvarakis, Giorgos; Kristensson, Adam; Kulmala, Markku; Lihavainen, Heikki; Lunder, Chris; Luoma, Krista; Lyamani, Hassan; Marinoni, Angela; Mihalopoulos, Nikolaos; Moerman, Marcel; Nicolas, José; O'Dowd, Colin D.; Petäjä, Tuukka; Petit, Jean-Eudes; Pichon, Jean Marc; Prokopciuk, Nina; Putaud, Jean-Philippe; Rodríguez, Sergio; Sciare, Jean; Sellegri, Karine; Swietlicki, Erik; Titos, Gloria; Tuch, Thomas; Tunved, Peter; Ulevicius, Vidmantas; Vaishya, Aditya; Vana, Milan; Virkkula, Aki; Vratolis, Stergios; Weingartner, Ernest; Wiedensohler, Alfred; Laj, PaoloThis paper presents the light-scattering properties of atmospheric aerosol particles measured over the past decade at 28 ACTRIS observatories, which are located mainly in Europe. The data include particle light scattering (σsp) and hemispheric backscattering (σbsp) coefficients, scattering Ångström exponent (SAE), backscatter fraction (BF) and asymmetry parameter (g). An increasing gradient of σsp is observed when moving from remote environments (arctic/mountain) to regional and to urban environments. At a regional level in Europe, σsp also increases when moving from Nordic and Baltic countries and from western Europe to central/eastern Europe, whereas no clear spatial gradient is observed for other station environments. The SAE does not show a clear gradient as a function of the placement of the station. However, a west-to-east-increasing gradient is observed for both regional and mountain placements, suggesting a lower fraction of fine-mode particle in western/south-western Europe compared to central and eastern Europe, where the fine-mode particles dominate the scattering. The g does not show any clear gradient by station placement or geographical location reflecting the complex relationship of this parameter with the physical properties of the aerosol particles. Both the station placement and the geographical location are important factors affecting the intra-annual variability. At mountain sites, higher σsp and SAE values are measured in the summer due to the enhanced boundary layer influence and/or new particle-formation episodes. Conversely, the lower horizontal and vertical dispersion during winter leads to higher σsp values at all low-altitude sites in central and eastern Europe compared to summer. These sites also show SAE maxima in the summer (with corresponding g minima). At all sites, both SAE and g show a strong variation with aerosol particle loading. The lowest values of g are always observed together with low σsp values, indicating a larger contribution from particles in the smaller accumulation mode. During periods of high σsp values, the variation of g is less pronounced, whereas the SAE increases or decreases, suggesting changes mostly in the coarse aerosol particle mode rather than in the fine mode. Statistically significant decreasing trends of σsp are observed at 5 out of the 13 stations included in the trend analyses. The total reductions of σsp are consistent with those reported for PM2.5 and PM10 mass concentrations over similar periods across Europe.01A - Beitrag in wissenschaftlicher ZeitschriftPublikation A global study of hygroscopicity-driven light-scattering enhancement in the context of other in situ aerosol optical properties(Copernicus, 2021) Titos, Gloria; Burgos, María A.; Zieger, Paul; Alados-Arboledas, Lucas; Baltensperger, Urs; Jefferson, Anne; Sherman, James; Weingartner, Ernest; Henzing, Bas; Luoma, Krista; O'Dowd, Colin; Wiedensohler, Alfred; Andrews, ElisabethThe scattering and backscattering enhancement factors (f(RH) and fb(RH)) describe how aerosol particle light scattering and backscattering, respectively, change with relative humidity (RH). They are important parameters in estimating direct aerosol radiative forcing (DARF). In this study we use the dataset presented in Burgos et al. (2019) that compiles f(RH) and fb(RH) measurements at three wavelengths (i.e., 450, 550 and 700 nm) performed with tandem nephelometer systems at multiple sites around the world. We present an overview of f(RH) and fb(RH) based on both long-term and campaign observations from 23 sites representing a range of aerosol types. The scattering enhancement shows a strong variability from site to site, with no clear pattern with respect to the total scattering coefficient. In general, higher f(RH) is observed at Arctic and marine sites, while lower values are found at urban and desert sites, although a consistent pattern as a function of site type is not observed. The backscattering enhancement fb(RH) is consistently lower than f(RH) at all sites, with the difference between f(RH) and fb(RH) increasing for aerosol with higher f(RH). This is consistent with Mie theory, which predicts higher enhancement of the light scattering in the forward than in the backward direction as the particle takes up water. Our results show that the scattering enhancement is higher for PM1 than PM10 at most sites, which is also supported by theory due to the change in scattering efficiency with the size parameter that relates particle size and the wavelength of incident light. At marine-influenced sites this difference is enhanced when coarse particles (likely sea salt) predominate. For most sites, f(RH) is observed to increase with increasing wavelength, except at sites with a known dust influence where the spectral dependence of f(RH) is found to be low or even exhibit the opposite pattern. The impact of RH on aerosol properties used to calculate radiative forcing (e.g., single-scattering albedo, ω0, and backscattered fraction, b) is evaluated. The single-scattering albedo generally increases with RH, while b decreases. The net effect of aerosol hygroscopicity on radiative forcing efficiency (RFE) is an increase in the absolute forcing effect (negative sign) by a factor of up to 4 at RH = 90 % compared to dry conditions (RH < 40 %). Because of the scarcity of scattering enhancement measurements, an attempt was made to use other more commonly available aerosol parameters (i.e., ω0 and scattering Ångström exponent, αsp) to parameterize f(RH). The majority of sites (75 %) showed a consistent trend with ω0 (higher f(RH = 85 %) for higher ω0), while no clear pattern was observed between f(RH = 85 %) and αsp. This suggests that aerosol ω0 is more promising than αsp as a surrogate for the scattering enhancement factor, although neither parameter is ideal. Nonetheless, the qualitative relationship observed between ω0 and f(RH) could serve as a constraint on global model simulations.01A - Beitrag in wissenschaftlicher ZeitschriftPublikation A novel measurement system for unattended, in situ characterization of carbonaceous aerosols(Copernicus, 22.12.2023) Keller, Alejandro; Specht, Patrick; Steigmeier, Peter; Weingartner, ErnestCarbonaceous aerosol is a relevant constituent of the atmosphere in terms of climate and health impacts. Nevertheless, measuring this component poses many challenges. There is currently no simple and sensitive commercial technique that can reliably capture its totality in an unattended manner, with minimal user intervention, for extended periods of time. To address this issue we have developed the fast thermal carbon totalizator (FATCAT). Our system captures an aerosol sample on a rigid metallic filter and subsequently analyses it by rapidly heating the filter directly, through induction, to a temperature around 800°C. The carbon in the filter is oxidized and quantified as CO2 in order to establish the total carbon (TC) content of the sample. The metallic filter is robust, which solves filter displacement or leakage problems, and does not require a frequent replacement like other measurement techniques. The limit of detection of our system using the 3σ criterion is TC =0.19 µg-C (micrograms of carbon). This translates to an average ambient concentration of TC =0.32 µg-C m^−3 and TC =0.16 µg-C m^−3 for sampling interval of 1 or 2 h respectively using a sampling flow rate of 10 L min^−1. We present a series of measurements using a controlled, well-defined propane flame aerosol as well as wood-burning emissions using two different wood-burning stoves. Furthermore, we complement these measurements by coating the particles with secondary organic matter by means of an oxidation flow reactor. Our device shows a good correlation (correlation coefficient, R^2>0.99) with well-established techniques, like mass measurements by means of a tapered element oscillating microbalance and TC measurements by means of thermal–optical transmittance analysis. Furthermore, the homogeneous fast-heating of the filter produces fast thermograms. This is a new feature that, to our knowledge, is exclusive of our system. The fast thermograms contain information regarding the volatility and refractoriness of the sample without imposing an artificial fraction separation like other measurement methods. Different aerosol components, like wood-burning emissions, soot from the propane flame and secondary organic matter, create diverse identifiable patterns.01A - Beitrag in wissenschaftlicher ZeitschriftPublikation A single-beam photothermal interferometer for in situ measurements of aerosol light absorption(Copernicus, 2020) Visser, Bradley; Röhrbein, Jannis; Steigmeier, Peter; Drinovec, Luka; Močnik, Griša; Weingartner, ErnestWe have developed a novel single-beam photothermal interferometer and present here its application for the measurement of aerosol light absorption. The use of only a single laser beam allows for a compact optical set-up and significantly easier alignment compared to standard dual-beam photothermal interferometers, making it ideal for field measurements. Due to a unique configuration of the reference interferometer arm, light absorption by aerosols can be determined directly – even in the presence of light-absorbing gases. The instrument can be calibrated directly with light-absorbing gases, such as NO2, and can be used to calibrate other light absorption instruments. The detection limits (1σ) for absorption for 10 and 60 s averaging times were determined to be 14.6 and 7.4 Mm−1, respectively, which for a mass absorption cross section of 10 m2 g−1 leads to equivalent black carbon concentration detection limits of 1460 and 740 ng m−3, respectively. The detection limit could be reduced further by improvements to the isolation of the instrument and the signal detection and processing schemes employed.01A - Beitrag in wissenschaftlicher ZeitschriftPublikation A synthesis of cloud condensation nuclei counter (CCNC) measurements within the EUCAARI network(Copernicus, 2015) Paramonov, Mikhail; Kerminen, Veli-Matti; Gysel, Martin; Aalto, Pasi Pekka; Andreae, Meinrat O.; Asmi, Eija; Baltensperger, Urs; Bougiatioti, Aikaterini; Brus, David; Frank, Göran; Good, Nicholas; Gunthe, Sachin S.; Hao, Liqing; Irwin, Martin; Jaatinen, Antti; Jurányi, Zsófia; King, S. M.; Kortelainen, Aki; Kristensson, Adam; Lihavainen, Heikki; Kulmala, Markku; Lohmann, Ulrike; Martin, Scot T.; McFiggans, Gordon; Mihalopoulos, Nikolaos; Nenes, Athanasios; O'Dowd, Colin D.; Ovadnevaite, Jurgita; Petäjä, Tuukka; Pöschl, Ulrich; Roberts, Greg; Rose, Diana; Svenningsson, Birgitta; Swietlicki, Erik; Weingartner, Ernest; Whitehead, James; Wiedensohler, Alfred; Wittbom, Cerina; Sierau, BerkoCloud condensation nuclei counter (CCNC) measurements performed at 14 locations around the world within the European Integrated project on Aerosol Cloud Climate and Air Quality interactions (EUCAARI) framework have been analysed and discussed with respect to the cloud condensation nuclei (CCN) activation and hygroscopic properties of the atmospheric aerosol. The annual mean ratio of activated cloud condensation nuclei (NCCN) to the total number concentration of particles (NCN), known as the activated fraction A, shows a similar functional dependence on supersaturation S at many locations – exceptions to this being certain marine locations, a free troposphere site and background sites in south-west Germany and northern Finland. The use of total number concentration of particles above 50 and 100 nm diameter when calculating the activated fractions (A50 and A100, respectively) renders a much more stable dependence of A on S; A50 and A100 also reveal the effect of the size distribution on CCN activation. With respect to chemical composition, it was found that the hygroscopicity of aerosol particles as a function of size differs among locations. The hygroscopicity parameter κ decreased with an increasing size at a continental site in south-west Germany and fluctuated without any particular size dependence across the observed size range in the remote tropical North Atlantic and rural central Hungary. At all other locations κ increased with size. In fact, in Hyytiälä, Vavihill, Jungfraujoch and Pallas the difference in hygroscopicity between Aitken and accumulation mode aerosol was statistically significant at the 5 % significance level. In a boreal environment the assumption of a size-independent κ can lead to a potentially substantial overestimation of NCCN at S levels above 0.6 %. The same is true for other locations where κ was found to increase with size. While detailed information about aerosol hygroscopicity can significantly improve the prediction of NCCN, total aerosol number concentration and aerosol size distribution remain more important parameters. The seasonal and diurnal patterns of CCN activation and hygroscopic properties vary among three long-term locations, highlighting the spatial and temporal variability of potential aerosol–cloud interactions in various environments.01A - Beitrag in wissenschaftlicher ZeitschriftPublikation Aerosol emission in a road tunnel(Elsevier, 02/1997) Weingartner, Ernest; Keller, Christian; Stahel, Werner; Burtscher, Heinz; Baltensperger, UrsContinuous measurements of aerosol emissions were performed within the scope of emission measurements in the Gubrist tunnel, a 3250 m long freeway tunnel near Zürich, Switzerland, from 20 September to 26 September 1993. The particles in the respirable size range (d < 3 μm) were found to be mainly tail pipe emissions with very small amount of tire wear and road dust. The calculated PM3 emission factor for diesel engines was about 310 mg/km, where the main part (63%) of the diesel vehicles were heavy-duty vehicles. Thirty-one percent of the PM3 emissions from diesel vehicles were black carbon and 0.86% particle bound PAR Due to the high fraction emitted by diesel engines the contribution of gasoline engines could not be evaluated by the statistical model. During their residence time in the tunnel the particles undergo significant changes, resulting in a more compact structure. It is concluded that this is mainly due to adsorption of volatile material from the gas phase to the particle surface.01A - Beitrag in wissenschaftlicher ZeitschriftPublikation Ambient and laboratory observations of organic ammonium salts in PM₁(Royal Society of Chemistry, 2017) Schlag, Patrick; Rubach, Florian; Mentel, Thomas F.; Reimer, David Thomas; Canonaco, Francesco; Henzing, Bas; Moerman, M.; Otjes, R.; Prévôt, André S.H.; Rohrer, Franz; Rosati, B.; Tillmann, Ralf; Weingartner, Ernest; Kiendler-Scharr, AstridAmbient measurements of PM1aerosol chemical composition at Cabauw, the Netherlands, implicate higher ammonium concentrations than explained by the formation of inorganic ammonium salts. This additional particulate ammonium is called excess ammonium (eNH4). Height profiles over the Cabauw Experimental Site for Atmospheric Research (CESAR) tower, of combined ground based and airborne aerosol mass spectrometric (AMS) measurements on a Zeppelin airship show higher concentrations ofeNH4at higher altitudes compared to the ground. Through flights across the Netherlands, the Zeppelin based measurements furthermore substantiateeNH4as a regional phenomenon in the planetary boundary layer. The excess ammonium correlates with mass spectral signatures of (di-)carboxylic acids, making a heterogeneous acid–base reaction the likely process of NH3uptake. We show that this excess ammonium was neutralized by the organic fraction forming particulate organic ammonium salts. We discuss the significance of such organic ammonium salts for atmospheric aerosols and suggest that NH3emission control will have benefits for particulate matter control beyond the reduction of inorganic ammonium salts.01A - Beitrag in wissenschaftlicher ZeitschriftPublikation Analysis of long‐term aerosol size distribution data from Jungfraujoch with emphasis on free tropospheric conditions, cloud influence, and air mass transport(Wiley, 2015) Herrmann, Erik; Weingartner, Ernest; Henne, Stephan; Vuilleumier, Laurent; Bukowiecki, Nicolas; Steinbacher, Martin; Conen, Franz; Collaud Coen, Martine; Hammer, Emanuel; Jurányi, Zsófia; Baltensperger, Urs; Gysel, MartinSix years of aerosol size distribution measurements between 20 and 600 nm diameters and total aerosol concentration above 10 nm from March 2008 to February 2014 at the high‐alpine site Jungfraujoch are presented. The size distribution was found to be typically bimodal with mode diameters and widths relatively stable throughout the year and the observation period. New particle formation was observed on 14.5% of all days without a seasonal preference. Particles typically grew only into the Aitken mode and did not reach cloud condensation nucleus (CCN) sizes on the time scale of several days. Growth of preexisting particles in the Aitken mode, on average, contributed very few CCN. We concluded that the dominant fraction of CCN at Jungfraujoch originated in the boundary layer. A number of approaches were used to distinguish free tropospheric (FT) conditions and episodes with planetary boundary layer (PBL) influence. In the absence of PBL injections, the concentration of particles larger than 90 nm (N90, roughly corresponding to the CCN concentration) reached a value ~40 cm−3 while PBL influence caused N90 concentrations of several hundred or even 1000 cm−3. Comparing three criteria for free tropospheric conditions, we found FT prevalence for 39% of the time with over 60% during winter and below 20% during summer. It is noteworthy that a simple criterion based on standard trace gas measurements appeared to outperform alternative approaches.01A - Beitrag in wissenschaftlicher ZeitschriftPublikation Comparing black carbon and aerosol absorption measuring instruments – a new system using lab-generated soot coated with controlled amounts of secondary organic matter(Copernicus, 2022) Kalbermatter, Daniel M.; Močnik, Griša; Drinovec, Luka; Visser, Bradley; Röhrbein, Jannis; Oscity, Matthias; Weingartner, Ernest; Hyvärinen, Antti-Pekka; Vasilatou, KonstantinaWe report on an inter-comparison of black-carbon- and aerosol-absorption-measuring instruments with laboratory-generated soot particles coated with controlled amounts of secondary organic matter (SOM). The aerosol generation setup consisted of a miniCAST 5201 Type BC burner for the generation of soot particles and a new automated oxidation flow reactor based on the micro smog chamber (MSC) for the generation of SOM from the ozonolysis of α-pinene. A series of test aerosols was generated with elemental to total carbon (EC / TC) mass fraction ranging from about 90 % down to 10 % and single-scattering albedo (SSA at 637 nm) from almost 0 to about 0.7. A dual-spot Aethalometer AE33, a photoacoustic extinctiometer (PAX, 870 nm), a multi-angle absorption photometer (MAAP), a prototype photoacoustic instrument, and two prototype photo-thermal interferometers (PTAAM-2λ and MSPTI) were exposed to the test aerosols in parallel. Significant deviations in the response of the instruments were observed depending on the amount of secondary organic coating. We believe that the setup and methodology described in this study can easily be standardised and provide a straightforward and reproducible procedure for the inter-comparison and characterisation of both filter-based and in situ black-carbon-measuring (BC-measuring) instruments based on realistic test aerosols.01A - Beitrag in wissenschaftlicher ZeitschriftPublikation Development of a waveguide-based interferometer for the measurement of trace substances(Zenodo, 07.11.2023) Weingartner, Ernest; Bilal, Jonas; Steigmeier, Peter; Jundt, Gregor; Häusler, Samuel; Lenner, Miklós; Flöry, Nikolaus; Bittner, Matthias; Betschon, FelixPhotonic integration on a chip has the potential to develop new low-cost, high-performance sensing devices. A proof of concept of the sensing capabilities of a waveguide-based photothermal interferometer for the measurement of traces of light-absorbing substances (soot particles, gases) has been achieved. The measurement principle can also be extended to a wide range of other applications such as refractive index measurements, or vibration/distance sensors. A unique feature is that the waveguide technology allows for a passive operation of the interferometer, i.e., no quadrature point control is required.04B - Beitrag KonferenzschriftPublikation Dual-wavelength light-scattering technique for selective detection of volcanic ash particles in the presence of water droplets(Copernicus, 2015) Jurányi, Zsófia; Burtscher, Heinz; Loepfe, Markus; Nenkov, Maxim; Weingartner, ErnestA new method is presented in this paper which analyses the scattered light of individual aerosol particles simultaneously at two different wavelengths in order to retrieve information on the particle type. We show that dust-like particles, such as volcanic ash, can be unambiguously discriminated from water droplets on a single-particle level. As a future application of this method, the detection of volcanic ash particles should be possible in a humid atmosphere in the presence of cloud droplets. The characteristic behaviour of pure water's refractive index can be used to separate water droplets and dust-like particles which are commonly found in the micrometre size range in the ambient air. The low real part of the water's refractive index around 2700–2800 nm results in low scattered light intensities compared to e.g. the visible wavelength range, and this feature can be used for the desired particle identification. The two-wavelength measurement set-up was theoretically and experimentally tested and studied. Theoretical calculations were done using Mie theory. Comparing the ratio of the scattered light at the two wavelengths (visible-to-IR (infrared), R value) for water droplets and different dust types (basalt, andesite, African mineral dust, sand, volcanic ash, pumice) showed at least 9-times-higher values (on average 70 times) for water droplets than for the dust types at any diameter within the particle size range of 2–20 μm. The envisaged measurement set-up was built up into a laboratory prototype and was tested with different types of aerosols. We generated aerosols from the following powders, simulating dust-like particles: cement dust, ISO 12103-1 A1 Ultrafine Test Dust and ash from the 2012 eruption of the Etna volcano. Our measurements verified the theoretical considerations; the median experimental R value is 8–21 times higher for water than for the "dust" particles.01A - Beitrag in wissenschaftlicher ZeitschriftPublikation Experimental investigations of size effects in thin copper foils(Springer Dordrecht, 2004) Simons, Gerd; Dual, Jürg; Weippert, Christina; Villain, Jürgen; Ahzi, S.; Cherkaoui, M.; Khaleel, M. A.; Zbib, H. M.; Zikry, M. A.; Lamatina, B.This work deals with the characterization of the deformation behavior of thin copper foils with the goal of investigating size effects. Tensile tests are performed with specimens, which possess a comparable microstructure, a constant thickness/width and width/length ratio whereas the thickness varies from 10 to 250 m. Results show a transition from ductile to a macroscopically “brittle” behavior in the range of about 20 m.04B - Beitrag KonferenzschriftPublikation First demonstration of a post-quantum key-exchange with a nanosatellite(08/2022) Burkhardt, Simon Martin; Meier, Willi; Wildfeuer, Christoph; Reezwana, Ayesha; Islam, Tanvirul; Ling, AlexanderWe demonstrate a post-quantum key-exchange with the nanosatellite SpooQy-1 in low Earth orbit using Kyber-512, a lattice-based key-encapsulation mechanism and a round three finalist in the NIST PQC standardization process. Our firmware solution runs on an on-board computer that is based on the Atmel AVR32 RISC microcontroller, a widely used platform for nanosatellites. We uploaded the new firmware with a 436.2 MHz UHF link using the CubeSat Space Protocol (CSP) and performed the steps of the key exchange in several passes over Switzerland. The shared secret key generated in this experiment could potentially be used to encrypt RF links with AES-256. This implementation demonstrates the feasibility of a quantum-safe authenticated key-exchange and encryption system on SWaP constrained nanosatellites.04B - Beitrag KonferenzschriftPublikation High order dynamic mode decomposition for mechanical vibrations and modal analysis(HAL, 2023) Tuor, Andreas; Canzani, Nico; Rüggeberg, Tobias; Gorenflo, Stefan; Simons, Gerd; Bättig, Bruno; Iseli, Daniel05 - Forschungs- oder ArbeitsberichtPublikation Interdisziplinäre Perspektiven zur Bedeutung der Aerosolübertragung für das Infektionsgeschehen von SARS-CoV-2(Thieme, 2022) Held, Andreas; Dellweg, Dominic; Köhler, Dieter; Pfaender, Stephanie; Scheuch, Gerhard; Schumacher, Stefan; Steinmann, Eike; Weingartner, Ernest; Weinzierl, Bernadett; Asbach, ChristofDie Bedeutung der Aerosolübertragung für das Severe Acute Respiratory Syndrome Coronavirus Type 2 (SARS-CoV-2) wurde anfangs kontrovers diskutiert. Mit der Zeit haben sich zur Infektionsminderung jedoch neben Abstands- und Hygieneregeln auch aerosolphysikalisch begründete Maßnahmen wie das Tragen von Gesichtsmasken und Lüftung von Innenräumen als effektiv erwiesen. In einem interdisziplinären Workshop „Aerosol & SARS-CoV-2“ der Gesellschaft für Aerosolforschung (GAeF) in Kooperation mit der Deutschen Gesellschaft für Pneumologie und Beatmungsmedizin (DGP), dem Fachverband Allgemeine Lufttechnik im VDMA, der Gesellschaft für Virologie (GfV), der Gesundheitstechnischen Gesellschaft (GG) und der International Society for Aerosols in Medicine (ISAM) unter der Schirmherrschaft des Robert-Koch-Instituts (RKI) im März 2021 wurde der Forschungs- und Abstimmungsbedarf zu diesem Thema aufgegriffen. Wesentliche Grundlagen aus den verschiedenen Disziplinen sowie interdisziplinäre Perspektiven zur Aerosolübertragung von SARS-CoV-2 und zu infektionsmindernden Maßnahmen werden hier zusammengefasst. Abschließend werden offene Forschungsfragen und dringender Forschungsbedarf dargestellt.01A - Beitrag in wissenschaftlicher ZeitschriftPublikation Mechanical properties of MEMS structures(2005) Dual, Jürg; Simons, Gerd; Villain, Jürgen; Weippert, Chr.Mechanical characterization of MEMS (micro electromechanical systems) materials is increasingly important in view of improving reliability and assessing the life time of new miniaturized devices. In this paper first a number of testing methods are described. These methods include tensile, torsion and fatigue testing of specially designed microstructures. Difficulties arise from manufacturing and handling of small structures and the determination of its geometrical dimensions which directly affect the accuracy of material parameters extracted from the experiments. In addition, the measurement of mechanical parameters like small forces and torques or strains poses a challenge. This paper focuses on size effects in rolled copper foils of thickness between 10 and 250 microns as determined from tensile testing. Tensile testing was chosen as a testing method in order to minimize strain gradients. Depending on the size the copper foils are tested in a classical setup or in a special tensile apparatus which is adapted to the small size of the specimens. The special setup consists of a balance to measure the applied force. The specimens are strained with a lead screw driven translation stage. In order to take care of slip and elasticity in the fixations the strain is measured optically directly on the sample using a least square template matching algorithm. It was found that depending on the thickness of the foils the average fracture strain decreases from about 15% down to .5 % for the 250 and 10 micron specimens, respectively. In order to find a reason for this dramatic change many efforts have been undertaken in order to characterize the specimens more precisely. The microstructure of the samples was determined using various methods including conventional micrographs, hardness measurements and X-ray diffraction.04B - Beitrag KonferenzschriftPublikation Mechanical size effects in thin copper foils. An experimental study(ETH Zürich, 2004) Simons, Gerd; Dual, Jürg; Villain, JürgenThe goal of this work is the investigation of the effect of several size parameters on the mechanical behavior of thin copper foils in tensile testing, in particular the question is whether a smaller sample has a different mechanical behavior than a larger one. Attention is paid to the most relevant size parameter, the thickness, and the influence of the microstructure of the foils, a factor which has not been accounted for systematically in literature up to now. Copper foils with 10, 20 and 34 μm thickness are tensile tested in-house, thicker foils (50, 100 and 250 μm) by a project partner (Laboratory of Materials for Mecha- tronics and Electrical Engineering, University of Applied Sciences Augsburg, Prof. Villain). For the tensile tests, a new setup was built which extends a previous setup developed by [Mazza, 1997] and allows for an automatic testing of the samples at a controlled strain rate. The standard strain rate applied is ˙≤ = 10−4 1/s. Samples with a dogbone shape are tested, their geometry is scaled according to the thick- ness. The samples are produced by wet etching of rolled and electrodeposited copper foils (standard sample type, “as-received samples”). Some of the samples are heat treated after etching (“heat treated samples”). As the microstructure of a crystalline solid has a significant influence on its mechanical behavior it is characterized in detail. Different techniques such as met- allography, X-ray diffraction and electron backscatter diffraction are applied for this task. The rolled samples (10 and 20 μm thick) have a strong cube texture with elongated grains with an oblate cross-section (typical length 100 μm, small diameter 5 μm, long diameter 30 μm). The electrodeposited samples have a columnar grain structure with a weak fibre texture. Heat treatment changes the microstructure of the rolled foils considerably. The grains are equi-axed with an average diameter of 15 μm. Thus, the 10 and 20 μm heat treated foils have only 1-2 grains per thick- ness. Rolling texture components with 〈111〉 parallel to the rolling direction form the preferred orientations, some grains are still in cube orientation. The most important result of the tensile tests is that the thickness of the foils has an influence on the mechanical behavior in the size regime studied. When the thickness is reduced from 250 to 10 μm the fracture strain decreases for the as-received foils from approximately 20% to 0.2% and for the samples with heat treatment from 35% to 15%. The tensile strength increases with smaller thickness for the as-received samples if the surface roughness is taken into account for the stress calculations (the surface roughness of the thinner foils is a considerable fraction of the total thickness). The 10 μm as-received foils have the highest tensile strength which is 400 MPa. The heat treated samples do not show a pronounced size dependence of the tensile strength. xi To explain the effects observed, in particular the size dependence of the fracture strain and the tensile strength as well as the low fracture strain of the 10 and 20 μm as-received foils (in the order of 0.2%), the surfaces of the fractured samples and the microstructure of the samples are analyzed in detail. The analysis of the fracture surfaces shows for all samples a failure by necking in thickness direction. Meaning that samples which show macroscopically a low fracture strain, i.e. a behavior which is typical for brittle materials, display micro- scopically large plastic deformations, i.e. a ductile behavior. This discrepancy can be explained by a strongly localized deformation: a sample fails as soon as the stresses in a cross-section reach a critical value; there is hardly any redistribution of strain, which is typical for ductile material behavior. This is also reflected by an analysis of the microstructure after the tensile test. The as-received samples do not show large microstructural changes with respect to the unloaded state except at the location of breakage. In comparison to that, the heat treated foils show a moderate elongation of the grains and a strong increase in surface roughness after tensile testing. This increase can be explained by the formation of slip bands at the surface and by the rotation of grains out of their original plane. The rotation of grains is facilitated by the low number of grains per thickness in the heat treated samples, as grains, which are in contact with the surface, can deform more easily. The general trend that thinner samples have a smaller fracture strain is believed to be caused by a combination of various mechanisms. Firstly, local reductions in cross-section by an imperfect sample geometry and by statistically random, plastic deformations are more critical for thinner samples. Secondly, surface grains can deform more easily and hence the number of grains per thickness has an impact on the mechanical behavior. Thirdly, in thinner samples there are less grains which could result in a smaller number of activated gliding systems. Fourthly, dislocations cannot build up large plastic deformations in small grains. The influence of other parameters such as width and length of a sample, strain rate and orientation with respect to the rolling direction were studied as well. In comparison with the thickness, they only have a small influence on the mechanical behavior of the foils tested. It has to be stressed that the size dependence found in this work was measured in a tensile test, i.e. a test where no considerable strain gradients occur. Experi- mental verification of size effects in loading situations, where no strain gradients are present, is scarce (e.g. [Weiss et al., 2002] and [Espinosa et al., 2004]). This work also shows that, for the explanation of the effects observed, a thorough examination of the microstructure of the samples tested is mandatory. As the influence of many parameters has to be taken into account in detail, the experimental study of size effects turns out to be a complicated topic. Besides the experimental details, this work shows the characterization results for the microstructure of the copper foils before and after tensile testing as well as the tensile test results for various parameters. The influence of many factors on the mechanical behavior of thin foils is discussed thoroughly and the tensile test behavior is explained by means of a simple geometrical model.11 - Studentische ArbeitPublikation Method of mounting a weigh-in-motion sensor in a roadway(Kistler Holding AG, 01.03.2019) Simons, Gerd; Pfluger, Kim12 - PatentPublikation Properties of jet engine combustion particles during the PartEmis experiment. Hygroscopic growth at supersaturated conditions(Wiley, 31.07.2003) Hitzenberger, Regina; Giebl, Heinrich; Petzold, Andreas; Gysel, Martin; Nyeki, Stephan; Weingartner, Ernest; Baltensperger, Urs; Wilson, C. W.During the EU Project PartEmis, the microphysical properties of aircraft combustion aerosol were investigated. This study is focused on the ability of exhaust aerosols to act as cloud condensation nuclei (CCN). The combustor was operated at two different conditions representing old and modern aircraft engine technology. CCN concentrations were measured with the University of Vienna CCN counter [Giebl et al., 2002] at supersaturations around 0.7%. The activation ratio (fraction of CCN in total aerosol) depended on the fuel sulphur content (FSC) and also on the operation conditions. CCN/CN ratios increased from 0.93 through 1.43 to 5.15*10ˉ³ (old cruise conditions) and 0.67 through 3.04 to 7.94*10ˉ³ (modern cruise conditions) when FSC increased from 50 through 410 to1270 μg/g. The activation behaviour was modelled using classical theories and with a semi-empirical model [Gysel et al., 2003] based on measured hygroscopicity of the aerosol under subsaturated conditions, which gave the best agreement.01A - Beitrag in wissenschaftlicher Zeitschrift