lnstitut für Sensorik und Elektronik
Dauerhafte URI für die Sammlunghttps://irf.fhnw.ch/handle/11654/28068
Listen
13 Ergebnisse
Ergebnisse nach Hochschule und Institut
Publikation Roadside measurements of particulate matter size distribution(Elsevier, 10/2003) Sturm, Peter J.; Baltensperger, Urs; Bacher, Michael; Lechner, Bernhard; Hausberger, Stefan; Heiden, Bernhard; Imhof, David; Weingartner, Ernest; Prévôt, André S.H.; Kurtenbach, Ralf; Wiesen, PeterRoadside measurements were performed in order to document the size distribution of particulate matter (PM) under dilution conditions similar to those found in real world. These activities covered measurements at engine test beds, at different locations in a road tunnel as well as in an urban environment. In order to get a clear picture of the evolution of the PM in different size classes, the in-tunnel locations ranged from curb-side to different locations inside the exhaust air system. Additional measurements were performed in the ambient air at curb-side at a street crossing as well as in urban background. At those times when heavy traffic occurs, tunnel measurements show size distributions similar to those derived from engine/vehicle measurements. During times with little traffic the size distributions are closer to those recorded in ambient air. As soon as the traffic load increases the size distribution changes, due to rapid coagulation of the smallest particles with the accumulation mode. As the travel time of the particles through the tunnel and up the stacks is very long “aging” effects could be observed. Thus, these spectra are quite different from ambient measurements in urban air, especially in the region above 30–40 nm.01A - Beitrag in wissenschaftlicher ZeitschriftPublikation Urban and rural aerosol characterization of summer smog events during the PIPAPO field campaign in Milan, Italy(Wiley, 2002) Baltensperger, Urs; Streit, Niklaus; Weingartner, Ernest; Nyeki, Stephan; Prévôt, André S.H.; Van Dingenen, Rita; Virkkula, Aki; Putaud, Jean-Philippe; Even, A.; ten Brink, Harry; Blatter, Andreas; Neftel, Albrecht; Gäggeler, Heinz W.A comprehensive range of aerosol parameters was measured at an urban and a rural site in the Milan, Italy metropolitan region during summer smog events in summer 1998. Measurements were performed as part of the Pianura Padana Produzione di Ozono (PIPAPO) field campaign to determine the sensitivity of O3 production to NOₓ and volatile organic carbon concentrations at several ground stations. Primary aerosol parameters (i.e., direct emissions) such as aerosol black carbon showed a distinct diurnal variation with maxima at about 0000 and 0800 central European summer time (CEST), in contrast to secondary aerosol parameters such as sulfate and nitrate. Aerosol number size distributions were measured under ambient conditions as well as after conditioning with volatility and hygroscopicity systems. A mode at d = 20–30 nm in the number concentration was found at 0800 CEST and exhibited high volatility at 110°C (∼80% volume lost upon heating) but no hygroscopic behavior. Based on these measurements, small particles (d < 40 nm) are thought to consist mainly of hydrophobic particulate organic matter, rather than soot or H2SO4 aerosols. Two distinct hygroscopic modes with average growth factors d/d0 ∼ 1.02 and 1.21–1.28 were found for particles with dry (relative humidity of <30%) diameters d0 = 50–200 nm. Submicrometer aerosols exhibited lower volatility at the rural than at the urban site, which is attributed to additional particulate mass produced by secondary particle formation.01A - Beitrag in wissenschaftlicher ZeitschriftPublikation A mobile pollutant measurement laboratory - measuring gas phase and aerosol ambient concentrations with high spatial and temporal resolution(Elsevier, 12/2002) Bukowiecki, Nicolas; Dommen, Josef; Prévôt, André S.H.; Richter, Rene; Weingartner, Ernest; Baltensperger, UrsA mobile pollutant measurement laboratory was designed and built at the Paul Scherrer Institute (Switzerland) for the measurement of on-road ambient concentrations of a large set of trace gases and aerosol parameters with high time resolution (<15 s for most instruments), along with geographical and meteorological information. This approach allowed for pollutant level measurements both near traffic (e.g. in urban areas or on freeways/main roads) and at rural locations far away from traffic, within short periods of time and at different times of day and year. Such measurements were performed on a regular base during the project year of gas phase and aerosol measurements (YOGAM). This paper presents data measured in the Zürich (Switzerland) area on a late autumn day (6 November) in 2001. The local urban particle background easily reached 50 000 cmˉ³, with additional peak particle number concentrations of up to 400 000 cmˉ³. The regional background of the total particle number concentration was not found to significantly correlate with the distance to traffic and anthropogenic emissions of carbon monoxide and nitrogen oxides. On the other hand, this correlation was significant for the number concentration of particles in the size range 50–150 nm, indicating that the particle number concentration in this size range is a better traffic indicator than the total number concentration. Particle number size distribution measurements showed that daytime urban ambient air is dominated by high number concentrations of ultrafine particles (nanoparticles) with diameters < 50 nm, which are immediately formed by traffic exhaust and thus belong to the primary emissions. However, significant variation of the nanoparticle mode was also observed in number size distributions measured in rural areas both at daytime and nighttime, suggesting that nanoparticles are not exclusively formed by primary traffic emissions. While urban daytime total number concentrations were increased by a factor of 10 compared to the nighttime background, corresponding factors for total surface area and total volume concentrations were 2 and 1.5, respectively.01A - Beitrag in wissenschaftlicher ZeitschriftPublikation Evidence for the role of organics in aerosol particle formation under atmospheric conditions(National Academy of Sciences, 19.01.2010) Metzger, Axel; Verheggen, Bart; Dommen, Josef; Duplissy, Jonathan; Prévôt, André S.H.; Weingartner, Ernest; Riipinen, Ilona; Kulmala, Markku; Spracklen, Dominick V.; Carslaw, Kenneth S.; Baltensperger, UrsNew particle formation in the atmosphere is an important parameter in governing the radiative forcing of atmospheric aerosols. However, detailed nucleation mechanisms remain ambiguous, as laboratory data have so far not been successful in explaining atmospheric nucleation. We investigated the formation of new particles in a smog chamber simulating the photochemical formation of H2SO4 and organic condensable species. Nucleation occurs at H2SO4 concentrations similar to those found in the ambient atmosphere during nucleation events. The measured particle formation rates are proportional to the product of the concentrations of H2SO4 and an organic molecule. This suggests that only one H2SO4 molecule and one organic molecule are involved in the rate-limiting step of the observed nucleation process. Parameterizing this process in a global aerosol model results in substantially better agreement with ambient observations compared to control runs.01A - Beitrag in wissenschaftlicher ZeitschriftPublikation Laboratory observation of oligomers in the aerosol from isoprene/NOₓ photooxidation(Wiley, 2006) Dommen, Josef; Metzger, Axel; Duplissy, Jonathan; Kalberer, Markus; Alfarra, M. Rami; Gascho, Astrid; Weingartner, Ernest; Prévôt, André S.H.; Verheggen, Bart; Baltensperger, UrsCompounds assigned to be oxidation products of isoprene (2-methyl-1,3-butadiene) have recently been observed in ambient aerosols, suggesting that isoprene might play an important role in secondary organic aerosol (SOA) formation due to its large global source strength. SOA yields from photooxidation of isoprene and NOₓ in a chamber agree fairly well with previous data. Matrix assisted laser desorption/ionization mass spectrometry showed the formation of high molecular weight compounds over the course of 15-hour experiments. Concurrently, the volatility of the SOA decreased markedly as observed by a tandem differential mobility analyzer. The volume fraction remaining of SOA at 150°C increased steadily from 5 to 25% during the same experiments. These observations are attributed to oligomerization reactions occurring in the aerosol phase. Under dry conditions a lower volatility was observed.01A - Beitrag in wissenschaftlicher ZeitschriftPublikation Cloud forming potential of secondary organic aerosol under near atmospheric conditions(Wiley, 2008) Duplissy, Jonathan; Gysel, Martin; Alfarra, M. Rami; Dommen, Josef; Metzger, Axel; Prévôt, André S.H.; Weingartner, Ernest; Laaksonen, Ari; Raatikainen, Tomi; Good, Nicholas; Turner, S. Fiona; McFiggans, Gordon; Baltensperger, UrsCloud droplets form by nucleation on atmospheric aerosol particles. Populations of such particles invariably contain organic material, a major source of which is thought to be condensation of photo‐oxidation products of biogenic volatile organic compounds (VOCs). We demonstrate that smog chamber studies of the formation of such biogenic secondary organic aerosol (SOA) formed during photo‐oxidation must be conducted at near atmospheric concentrations to yield atmospherically representative particle composition, hygroscopicity and cloud‐forming potential. Under these conditions, the hygroscopicity measured at 95% relative humidity can be used reliably to predict the CCN activity of the SOA particles by assuming droplet surface tension of pure water. We also show that the supersaturation required to activate a given size of particle decreases with age.01A - Beitrag in wissenschaftlicher ZeitschriftPublikation Secondary organic aerosols from anthropogenic and biogenic precursors(Royal Society of Chemistry, 2005) Baltensperger, Urs; Kalberer, Markus; Dommen, Josef; Paulsen, Dwane; Alfarra, M. Rami; Coe, Hugh; Fisseha, Rebeka; Gascho, Astrid; Gysel, Martin; Nyeki, Stephan; Sax, Mirjam; Steinbacher, Martin; Prévôt, André S.H.; Sjögren, Staffan; Weingartner, Ernest; Zenobi, RenatoSecondary organic aerosol (SOA) formation from the photooxidation of an anthropogenic (1,3,5-trimethylbenzene) and a biogenic (α-pinene) precursor was investigated at the new PSI smog chamber. The chemistry of the gas phase was followed by proton transfer reaction mass spectrometry, while the aerosol chemistry was investigated with aerosol mass spectrometry, ion chromatography, laser desorption ionization mass spectrometry, and infrared spectroscopy, along with volatility and hygroscopicity studies. Evidence for oligomer formation for SOA from both precursors was given by an increasing abundance of compounds with a high molecular weight (up to 1000 Da) and by an increasing thermal stability with increasing aging time. The results were compared to data obtained from ambient aerosol samples, revealing a number of similar features.01A - Beitrag in wissenschaftlicher ZeitschriftPublikation Identification of polymers as major components of atmospheric organic aerosols(Springer, 2004) Kalberer, Markus; Paulsen, Dwane; Sax, Mirjam; Steinbacher, Martin; Dommen, Josef; Prévôt, André S.H.; Fisseha, Rebeka; Weingartner, Ernest; Frankevich, Vladimir; Zenobi, Renato; Baltensperger, UrsResults from photooxidation of aromatic compounds in a reaction chamber show that a substantial fraction of the organic aerosol mass is composed of polymers. This polymerization results from reactions of carbonyls and their hydrates. After aging for more than 20 hours, about 50% of the particle mass consists of polymers with a molecular mass up to 1000 daltons. This results in a lower volatility of this secondary organic aerosol and a higher aerosol yield than a model using vapor pressures of individual organic species would predict.01A - Beitrag in wissenschaftlicher ZeitschriftPublikation Secondary organic aerosol formation by irradiation of 1,3,5-trimethylbenzene−NOₓ-H2O in a new reaction chamber for atmospheric chemistry and physics(American Chemical Society, 12.03.2005) Paulsen, Dwane; Dommen, Josef; Kalberer, Markus; Prévôt, André S.H.; Richter, René; Sax, Mirjam; Steinbacher, Martin; Weingartner, Ernest; Baltensperger, UrsA new environmental reaction smog chamber was built to simulate particle formation and growth similar to that expected in the atmosphere. The organic material is formed from nucleation of photooxidized organic compounds. The chamber is a 27 m³ fluorinated ethylene propylene (FEP) bag suspended in a temperature-controlled enclosure. Four xenon arc lamps (16 kW total) are used to irradiate primary gas components for experiments lasting up to 24 h. Experiments using irradiations of 1,3,5-trimethylbenzene−NOₓ−H2O at similar input concentrations without seed particles were used to determine particle number and volume concentration wall loss rates of 0.209 ± 0.018 and 0.139 ± 0.070 1/h, respectively. The particle formation was compared with and without propene.01A - Beitrag in wissenschaftlicher ZeitschriftPublikation A study of wood burning and traffic aerosols in an Alpine valley using a multi-wavelength aethalometer(Elsevier, 20.09.2008) Sandradewi, Jisca; Prévôt, André S.H.; Weingartner, Ernest; Schmidhauser, Ralph; Gysel, Martin; Baltensperger, UrsWe present a study of aerosol light absorption using a multi-wavelength Aethalometer (l ¼ 370–950 nm) in an Alpine valley where the major local emissions of aerosols in winter are from domestic wood burning and traffic. The measurements were done in winter and summer periods in 2004 and 2005. Much stronger diurnal trends in CO, NOx and aerosol light absorption parameters were observed in winter than in summer. The average (71 S.D.) PM10 concentrations measured at this site were 31.5721.7 mg m 3 in winter and 15.8710.0 mg m 3 in summer. The highest PM10 concentrations were observed between 18:00 and 22:00 h CET in both campaigns, with 45.4721.0 mg m 3 for winter and 21.079.5 mg m 3 for summer. The average (71 S.D.) power law exponents of the absorption coefficients (also called absorption exponent) with l ¼ 370–950 nm, a370–950 nm were 1.670.25 in winter and 1.170.05 in summer. The calculation of a separately for lower and higher wavelengths (i.e., a370–520 nm and a660–950 nm) provided a better description of the wavelength dependence from the UV- to the near-IR region. The highest mean values of a370–520 nm and a660–950 nm were observed between 22:00 and 02:00 h CET in winter with 2.770.4 and 1.370.1, respectively. Comparison of a370–520 nm with CO and NOx data indicated that the relative contribution of wood burning versus traffic was responsible for the seasonal and diurnal variability of a. The seasonal and diurnal trends of a were not attributed to changes in the particle size since the aerosol volume size distributions (dV/d log D) were found to be similar in both campaigns.01A - Beitrag in wissenschaftlicher Zeitschrift