Institut für Medizintechnik und Medizininformatik

Dauerhafte URI für die Sammlunghttps://irf.fhnw.ch/handle/11654/23

Listen

Ergebnisse nach Hochschule und Institut

Gerade angezeigt 1 - 5 von 5
  • Publikation
    Geometric cuts by an autonomous laser osteotome increase stability in mandibular reconstruction with free fibula grafts. A cadaver study
    (Elsevier, 2024) Gottsauner, Maximilian; Morawska, Marta M.; Tempel, Simon; Müller-Gerbl, Magdalena; Dalcanale, Federico; de Wild, Michael; Ettl, Tobias
    Background Nonunion and plate exposure represent a major complication after mandibular reconstruction with free fibula flaps. These drawbacks may be resolved by geometric osteotomies increasing intersegmental bone contact area and stability. Purpose The aim of this study was to compare intersegmental bone contact and stability of geometric osteotomies to straight osteotomies in mandibular reconstructions with free fibula grafts performed by robot-guided erbium-doped yttrium aluminum garnet laser osteotomy.
    01A - Beitrag in wissenschaftlicher Zeitschrift
  • Publikation
    Geometric cuts by an autonomous laser osteotome increase stability in mandibular reconstruction with free fibula grafts. A cadaver study
    (Elsevier, 2024) Gottsauner, Maximilian; Morawska, Marta M.; Tempel, Simon; Müller-Gerbl, Magdalena; Dalcanale, Federico; de Wild, Michael; Ettl, Tobias
    01A - Beitrag in wissenschaftlicher Zeitschrift
  • Publikation
    Parameter optimization in a finite element mandibular fracture fixation model using the design of experiments approach
    (Elsevier, 08/2023) Maintz, Michaela; Msallem, Bilal; de Wild, Michael; Seiler, Daniel; Herrmann, Sven; Feiler, Stefanie; Sharma, Neha; Dalcanale, Federico; Cattin, Philippe; Thieringer, Florian Markus
    01A - Beitrag in wissenschaftlicher Zeitschrift
  • Vorschaubild
    Publikation
    Quantitative assessment of point-of-care 3D-printed patient-specific polyetheretherketone (PEEK) cranial implants
    (MDPI, 07.08.2021) Seiler, Daniel; Dalcanale, Federico; Sharma, Neha; Aghlmandi, Soheila; Zeilhofer, Hans-Florian; Thieringer, Florian; Honigmann, Philipp
    Recent advancements in medical imaging, virtual surgical planning (VSP), and three-dimensional (3D) printing have potentially changed how today’s craniomaxillofacial surgeons use patient information for customized treatments. Over the years, polyetheretherketone (PEEK) has emerged as the biomaterial of choice to reconstruct craniofacial defects. With advancements in additive manufacturing (AM) systems, prospects for the point-of-care (POC) 3D printing of PEEK patient-specific implants (PSIs) have emerged. Consequently, investigating the clinical reliability of POC-manufactured PEEK implants has become a necessary endeavor. Therefore, this paper aims to provide a quantitative assessment of POC-manufactured, 3D-printed PEEK PSIs for cranial reconstruction through characterization of the geometrical, morphological, and biomechanical aspects of the in-hospital 3D-printed PEEK cranial implants. The study results revealed that the printed customized cranial implants had high dimensional accuracy and repeatability, displaying clinically acceptable morphologic similarity concerning fit and contours continuity. From a biomechanical standpoint, it was noticed that the tested implants had variable peak load values with discrete fracture patterns and failed at a mean (SD) peak load of 798.38 ± 211.45 N. In conclusion, the results of this preclinical study are in line with cranial implant expectations; however, specific attributes have scope for further improvements.
    01A - Beitrag in wissenschaftlicher Zeitschrift
  • Publikation
    CaP bone‐like coating for fast osseointegration of dental implants
    (Wiley, 05.10.2020) Dalcanale, Federico; Bitiqi, Hekuran; de Wild, Michael
    01A - Beitrag in wissenschaftlicher Zeitschrift