Institut für Medizintechnik und Medizininformatik
Dauerhafte URI für die Sammlunghttps://irf.fhnw.ch/handle/11654/23
Listen
3 Ergebnisse
Ergebnisse nach Hochschule und Institut
Publikation Combining micro computed tomography and three-dimensional registration to evaluate local strains in shape memory scaffolds(Elsevier, 02/2014) Bormann, Therese; Schulz, Georg; Deyhle, Hans; Beckmann, Felix; de Wild, Michael; Küffer, Jürg; Münch, Christoph; Hoffmann, Waldemar; Müller, BertAppropriate mechanical stimulation of bony tissue enhances osseointegration of load-bearing implants. Uniaxial compression of porous implants locally results in tensile and compressive strains. Their experimental determination is the objective of this study. Selective laser melting is applied to produce open-porous NiTi scaffolds of cubic units. To measure displacement and strain fields within the compressed scaffold, the authors took advantage of synchrotron radiation-based micro computed tomography during temperature increase and non-rigid three-dimensional data registration. Uniaxial scaffold compression of 6% led to local compressive and tensile strains of up to 15%. The experiments validate modeling by means of the finite element method. Increasing the temperature during the tomography experiment from 15 to 37 °C at a rate of 4 K h−1, one can locally identify the phase transition from martensite to austenite. It starts at ∼24 °C on the scaffolds bottom, proceeds up towards the top and terminates at ∼34 °C on the periphery of the scaffold. The results allow not only design optimization of the scaffold architecture, but also estimation of maximal displacements before cracks are initiated and of optimized mechanical stimuli around porous metallic load-bearing implants within the physiological temperature range.01A - Beitrag in wissenschaftlicher ZeitschriftPublikation Porous shape-memory-scaffolds as mechanically active bone implants(2015) de Wild, Michael; Hoffmann, Waldemar; Schlottig, Falko; Schumacher, Ralf; Bormann, Therese; Martin, Ivan; Müller, Bert; Mürrle, Ulrich06 - PräsentationPublikation Novel perfused compression bioreactor system as an in vitro model to investigate fracture healing(Frontiers, 2015) de Wild, Michael; Hoffmann, Waldemar; Feliciano, Sandra; Martin, Ivan; Wendt, DavidSecondary bone fracture healing is a physiological process that leads to functional tissue regeneration via endochondral bone formation. In vivo studies have demonstrated that early mobilization and the application of mechanical loads enhances the process of fracture healing. However, the influence of specific mechanical stimuli and particular effects during specific phases of fracture healing remain to be elucidated. In this work, we have developed and provided proof-of-concept of an in vitro human organotypic model of physiological loading of a cartilage callus, based on a novel perfused compression bioreactor (PCB) system. We then used the fracture callus model to investigate the regulatory role of dynamic mechanical loading. Our findings provide a proof-of-principle that dynamic mechanical loading applied by the PCB can enhance the maturation process of mesenchymal stromal cells toward late hypertrophic chondrocytes and the mineralization of the deposited extracellular matrix. The PCB provides a promising tool to study fracture healing and for the in vitro assessment of alternative fracture treatments based on engineered tissue grafts or pharmaceutical compounds, allowing for the reduction of animal experiments.01A - Beitrag in wissenschaftlicher Zeitschrift