Institut für Medizintechnik und Medizininformatik
Dauerhafte URI für die Sammlunghttps://irf.fhnw.ch/handle/11654/23
Listen
85 Ergebnisse
Ergebnisse nach Hochschule und Institut
Publikation Computational deconvolution of the dengue immune response complexity with identification of novel broadly neutralizing antibodies(21.09.2022) Natali, Eriberto Noel; Horst, Alexander; Meier, Patrick; Greiff, Victor; Nuvolone, Mario; Babrak, Lmar Marie; Djordjevic, Kristina; Fink, Katja; Traggiai, Elisabetta; Miho, EnkelejdaDengue virus poses a serious threat to global health as the causative agent of the dengue fever. Currently, there is no approved therapeutic, and broadly neutralizing antibodies recognizing all four serotypes may be an effective treatment. High-throughput immune repertoire sequencing and bioinformatic analysis enable in-depth understanding of the immune response in dengue infection. Here, we use these technologies and apply machine learning to identify rare and underrepresented broadly neutralizing antibody sequences through investigation of antibody response in dengue. We observed challenging the immune system with dengue elicits the following signatures on the antibody repertoire: (i) an increase of the diversity in the CDR3 regions and the germline genes; (ii) a change in the architecture by eliciting power-law network distributions and enrichment in polar amino acids of the CDR3; (iii) an increase in the expression of transcription factors of the JNK/Fos pathways and ribosomal proteins. Moreover, our work demonstrates the applicability of computational methods and machine learning to high-throughput antibody repertoire sequencing datasets for neutralizing antibody candidate identification. Further investigation with antibody expression and functional assays is planned to validate the obtained results.06 - PräsentationPublikation Cloud-based three-dimensional pattern analysis and classification of proximal humeral fractures – A feasibility study(EasyChair, 2022) Kalt, Denise; Gerber Popp, Ariane; Degen, Markus; Brodbeck, Dominique; Coigny, Florian; Suter, Thomas; Schkommodau, Erik; Rodriguez y Baena, Ferdinando; Giles, Joshua W.; Stindel, EricFor the complex clinical issue of treatment decision for proximal humeral fractures, dedicated software based on three-dimensional (3D) computer tomography (CT) models would potentially allow for a more accurate fracture classification and help to plan the surgical strategy needed to reduce the fracture in the operating theatre. The aim of this study was to elaborate the feasibility of implementation of such software using state-of-the-art cloud technology to enable access to its functionalities in a distributed manner. Feasibility was studied by implementation of a prototype application, which was tested in a usability study with five biomedical engineers. Implementation of a cloud-based solution was feasible using state-of-the-art technology under application of a specific software architectural approach allowing to distribute computational load between client and server. Mean System Usability Scale (SUS) Score for the developed application was determined to be 63 (StDev 20.4). These results can be interpreted as a medium low usability with high standard deviation of the measured SUS score. We conclude that more test subjects should be included in future studies and the developed application should be evaluated with a representative user group such as orthopaedic shoulder surgeons in a clinical setting.04B - Beitrag KonferenzschriftPublikation Tracking the orientation of deep brain stimulation electrodes using an embedded magnetic sensor(2021) Vergne, Céline; Madec, Morgan; Hemm-Ode, Simone; Quirin, Thomas; Vogel, Dorian; Hebrard, Luc; Pascal, JorisThis paper proposes a three-dimensional (3D) orientation tracking method of a 3D magnetic sensor embedded in a 2.5 mm diameter electrode. Our system aims to be used during intraoperative surgery to detect the orientation of directional leads (D-leads) for deep brain stimulation (DBS).06 - PräsentationPublikation Author Correction. The dengue-specific immune response and antibody identification with machine learning(Nature, 20.01.2024) Natali, Eriberto Noel; Horst, Alexander; Meier, Patrick; Greiff, Victor; Nuvolone, Mario; Babrak, Lmar Marie; Fink, Katja; Miho, EnkelejdaDengue virus poses a serious threat to global health and there is no specific therapeutic for it. Broadly neutralizing antibodies recognizing all serotypes may be an effective treatment. High-throughput adaptive immune receptor repertoire sequencing (AIRR-seq) and bioinformatic analysis enable in-depth understanding of the B-cell immune response. Here, we investigate the dengue antibody response with these technologies and apply machine learning to identify rare and underrepresented broadly neutralizing antibody sequences. Dengue immunization elicited the following signatures on the antibody repertoire: (i) an increase of CDR3 and germline gene diversity; (ii) a change in the antibody repertoire architecture by eliciting power-law network distributions and CDR3 enrichment in polar amino acids; (iii) an increase in the expression of JNK/Fos transcription factors and ribosomal proteins. Furthermore, we demonstrate the applicability of computational methods and machine learning to AIRR-seq datasets for neutralizing antibody candidate sequence identification. Antibody expression and functional assays have validated the obtained results.01A - Beitrag in wissenschaftlicher ZeitschriftPublikation The dengue-specific immune response and antibody identification with machine learning(Nature, 20.01.2024) Natali, Eriberto Noel; Horst, Alexander; Meier, Patrick; Greiff, Victor; Nuvolone, Mario; Babrak, Lmar Marie; Fink, Katja; Miho, EnkelejdaDengue virus poses a serious threat to global health and there is no specific therapeutic for it. Broadly neutralizing antibodies recognizing all serotypes may be an effective treatment. High-throughput adaptive immune receptor repertoire sequencing (AIRR-seq) and bioinformatic analysis enable in-depth understanding of the B-cell immune response. Here, we investigate the dengue antibody response with these technologies and apply machine learning to identify rare and underrepresented broadly neutralizing antibody sequences. Dengue immunization elicited the following signatures on the antibody repertoire: (i) an increase of CDR3 and germline gene diversity; (ii) a change in the antibody repertoire architecture by eliciting power-law network distributions and CDR3 enrichment in polar amino acids; (iii) an increase in the expression of JNK/Fos transcription factors and ribosomal proteins. Furthermore, we demonstrate the applicability of computational methods and machine learning to AIRR-seq datasets for neutralizing antibody candidate sequence identification. Antibody expression and functional assays have validated the obtained results.01A - Beitrag in wissenschaftlicher ZeitschriftPublikation Single-molecule real-time sequencing of the M protein.Toward personalized medicine in monoclonal gammopathies(Wiley, 05.08.2022) Cascino, Pasquale; Nevone, Alice; Piscitelli, Maggie; Scopelliti, Claudia; Girelli, Maria; Mazzini, Giulia; Caminito, Serena; Russo, Giancarlo; Milani, Paolo; Basset, Marco; Foli, Andrea; Fazio, Francesca; Casarini, Simona; Massa, Margherita; Bozzola, Margherita; Ripepi, Jessica; Sesta, Melania Antonietta; Acquafredda, Gloria; De Cicco, Marica; Moretta, Antonia; Rognoni, Paola; Milan, Enrico; Ricagno, Stefano; Lavatelli, Francesca; Petrucci, Maria Teresa; Miho, Enkelejda; Klersy, Catherine; Merlini, Giampaolo; Palladini, Giovanni; Nuvolone, Mario01A - Beitrag in wissenschaftlicher ZeitschriftPublikation In silico proof of principle of machine learning-based antibody design at unconstrained scale(Taylor & Francis, 04.04.2022) Akbar, Rahmad; Robert, Philippe A.; Weber, Cédric R.; Widrich, Michael; Frank, Robert; Pavlović, Milena; Scheffer, Lonneke; Chernigovskaya, Maria; Snapkov, Igor; Slabodkin, Andrei; Mehta, Brij Bhushan; Miho, Enkelejda; Lund-Johansen, Fridtjof; Andersen, Jan Terje; Hochreiter, Sepp; Hobæk Haff, Ingrid; Klambauer, Günter; Sandve, Geir Kjetil; Greiff, VictorGenerative machine learning (ML) has been postulated to become a major driver in the computational design of antigen-specific monoclonal antibodies (mAb). However, efforts to confirm this hypothesis have been hindered by the infeasibility of testing arbitrarily large numbers of antibody sequences for their most critical design parameters: paratope, epitope, affinity, and developability. To address this challenge, we leveraged a lattice-based antibody-antigen binding simulation framework, which incorporates a wide range of physiological antibody-binding parameters. The simulation framework enables the computation of synthetic antibody-antigen 3D-structures, and it functions as an oracle for unrestricted prospective evaluation and benchmarking of antibody design parameters of ML-generated antibody sequences. We found that a deep generative model, trained exclusively on antibody sequence (one dimensional: 1D) data can be used to design conformational (three dimensional: 3D) epitope-specific antibodies, matching, or exceeding the training dataset in affinity and developability parameter value variety. Furthermore, we established a lower threshold of sequence diversity necessary for high-accuracy generative antibody ML and demonstrated that this lower threshold also holds on experimental real-world data. Finally, we show that transfer learning enables the generation of high-affinity antibody sequences from low-N training data. Our work establishes a priori feasibility and the theoretical foundation of high-throughput ML-based mAb design.01A - Beitrag in wissenschaftlicher ZeitschriftPublikation Kidins220 regulates the development of B cells bearing the λ light chain(eLife Sciences Publications, 25.01.2024) Schaffer, Anna-Maria; Fiala, Gina Jasmin; Hils, Miriam; Natali, Eriberto; Babrak, Lmar; Herr, Laurenz Alexander; Romero-Mulero, Mari Carmen; Cabezas-Wallscheid, Nina; Rizzi, Marta; Miho, Enkelejda; Schamel, Wolfgang W.A.; Minguet, SusanaThe ratio between κ and λ light chain (LC)-expressing B cells varies considerably between species. We recently identified Kinase D-interacting substrate of 220 kDa (Kidins220) as an interaction partner of the BCR. In vivo ablation of Kidins220 in B cells resulted in a marked reduction of λLC-expressing B cells. Kidins220 knockout B cells fail to open and recombine the genes of the Igl locus, even in genetic scenarios where the Igk genes cannot be rearranged or where the κLC confers autoreactivity. Igk gene recombination and expression in Kidins220-deficient B cells is normal. Kidins220 regulates the development of λLC B cells by enhancing the survival of developing B cells and thereby extending the time-window in which the Igl locus opens and the genes are rearranged and transcribed. Further, our data suggest that Kidins220 guarantees optimal pre-BCR and BCR signaling to induce Igl locus opening and gene recombination during B cell development and receptor editing.01A - Beitrag in wissenschaftlicher ZeitschriftPublikation Exploitation of transition temperatures of NiTi- SMA by adjusting SLM parameters(De Gruyter, 2021) Schuler, Felix; Dany, Sebastian; John, Christoph; de Wild, MichaelAbstract:It is well known that the transition temperatures, e.g. the austenite peak temperature Ap, of NiTi Shape Memory Alloys (SMAs) can be adjusted by changing the alloy composition. This topic recently became more interesting due to the possibilities to produce SMA-parts by additive manufacturing, specifically by Selective Laser Melting (SLM). The potential of new designs and smart structures by so-called 4D-printingwith locally adjusted transition temperatures Appotentially opensup new applicationsand novel temperature-responsive medical devices. This work focuses on the SLM manufacturing parameters exposure time ET(scanning speed) and laser power Pand their impact on the transition temperatureApbeyond the commonly used generic process parameter energy density ED. By systematical variation of process-and scan-parameters, the impact of the P, ET, sample orientation and layer heightLHas well as interdependencies between them have been studied. Awide range of transition temperatures Apbetween -20°C and 70°C has been reached from one starting material by varying ET. These findings potentially allow the manufacturing of smart devices with multi-stage deformation processes in a single 4D-printed part01A - Beitrag in wissenschaftlicher ZeitschriftPublikation Unconstrained generation of synthetic antibody–antigen structures to guide machine learning methodology for antibody specificity prediction(Nature, 19.12.2022) Robert, Philippe A.; Akbar, Rahmad; Frank, Robert; Pavlović, Milena; Widrich, Michael; Snapkov, Igor; Slabodkin, Andrei; Chernigovskaya, Maria; Scheffer, Lonneke; Smorodina, Eva; Rawat, Puneet; Mehta, Brij Bhushan; Vu, Mai Ha; Mathisen, Ingvild Frøberg; Prósz, Aurél; Abram, Krzysztof; Olar, Alex; Miho, Enkelejda; Haug, Dag Trygve Tryslew; Lund-Johansen, Fridtjof; Hochreiter, Sepp; Haff, Ingrid Hobæk; Klambauer, Günter; Sandve, Geir Kjetil; Greiff, VictorMachine learning (ML) is a key technology for accurate prediction of antibody–antigen binding. Two orthogonal problems hinder the application of ML to antibody-specificity prediction and the benchmarking thereof: the lack of a unified ML formalization of immunological antibody-specificity prediction problems and the unavailability of large-scale synthetic datasets to benchmark real-world relevant ML methods and dataset design. Here we developed the Absolut! software suite that enables parameter-based unconstrained generation of synthetic lattice-based three-dimensional antibody–antigen-binding structures with ground-truth access to conformational paratope, epitope and affinity. We formalized common immunological antibody-specificity prediction problems as ML tasks and confirmed that for both sequence- and structure-based tasks, accuracy-based rankings of ML methods trained on experimental data hold for ML methods trained on Absolut!-generated data. The Absolut! framework has the potential to enable real-world relevant development and benchmarking of ML strategies for biotherapeutics design.01A - Beitrag in wissenschaftlicher Zeitschrift