Listen
35 Ergebnisse
Ergebnisse nach Hochschule und Institut
Publikation Organic photovoltaics: Potential fate and effects in the environment(Elsevier, 2012) Zimmermann, Yannick-Serge; Schäffer, Andreas; Hugi, Christoph; Fent, Karl; Corvini, Philippe; Lenz, MarkusIn times of dwindling fossil fuels it is particularly crucial to develop novel “green” technologies in order to cover the increasing worldwide demand for energy. Organic photovoltaic solar cells (OPVs) are promising as a renewable energy source due to low energy requirement for production, low resource extraction, and no emission of greenhouse gasses during use. In contrast to silicium-based solar cells, OPVs offer the advantages of light-weight, semi-transparency and mechanical flexibility. As to a possible forthcoming large-scale production, the environmental impact of such OPVs should be assessed and compared to currently best available technologies. For the first time, this review compiles the existing knowledge and identifies gaps regarding the environmental impact of such OPVs in a systematic manner. In this regard, we discuss the components of a typical OPV layer by layer. We discuss the probability of enhanced release of OPV-borne components into the environment during use-phase (e.g. UV- and biodegradation) and end-of-life phase (e.g. incineration and waste disposal). For this purpose, we compiled available data on bioavailability, bioaccumulation, biodegradation, and ecotoxicity. Whereas considerable research has already been carried out concerning the ecotoxicity of certain OPV components (e.g. nanoparticles and fullerenes), others have not been investigated at all so far. In conclusion, there is a general lack of information about fate, behavior as well as potential ecotoxicity of most of the main OPV components and their degradation/transformation products. So far, there is no evidence for a worrying threat coming from OPVs, but since at present, no policy and procedures regarding recycling of OPVs are in action, in particular improper disposal upon end-of-life might result in an adverse effect of OPVs in the environment when applied in large-scale.01A - Beitrag in wissenschaftlicher ZeitschriftPublikation Circularity and environmental sustainability of organic and printed electronics(Jenny Stanford Publishing, 2024) Le Blévennec, Kévin; Hengevoss, Dirk; Zimmermann, Yannick-Serge; Brun, Nadja; Hugi, Christoph; Lenz, Markus; Corvini, Philippe; Fent, Karl; Nisato, Giovanni; Lupo, Donald; Rudolf, SimoneIn this chapter, the possible role and impact of organic and printed electronics (OPE) in a transition toward a circular economy and more sustainable society will be discussed. The learning targets are twofold: first, understanding main environmental issues associated with the emerging field of OPE, and second, identifying, through a systemic perspective, the enabling potential of these technologies.04A - Beitrag SammelbandPublikation Efficient catalytic ozonation over Co-ZFO@Mn-CN for oxalic acid degradation. Synergistic effect of oxygen vacancies and HOO-Mn-NX bonds(Elsevier, 03/2023) Xu, Menglu; Zhang, Yibing; Yin, Huaqin; Wang, Jinnan; Li, Aimin; Corvini, Philippe01A - Beitrag in wissenschaftlicher ZeitschriftPublikation The sulfonamide-resistance dihydropteroate synthase gene is crucial for efficient biodegradation of sulfamethoxazole by Paenarthrobacter species(Springer, 13.07.2023) Wu, Tong; Guo, Sheng-Zhi; Zhu, Hai-Zhen; Yan, Lei; Liu, Zhi-Pei; Li, De-Feng; Jiang, Cheng-Ying; Corvini, Philippe; Shen, Xi-Hui; Liu, Shuang-Jiang01A - Beitrag in wissenschaftlicher ZeitschriftPublikation Boosting light harvesting and charge separation over hollow double-shelled Ag@SrTiO3-TiO2 with Z-scheme heterostructure for highly efficient photocatalytic reduction of nitrate to N2(Elsevier, 01.02.2023) Zhang, Yixuan; Liu, Cong; Zhou, Ye; Wang, Jinnan; Li, Aimin; Corvini, Philippe01A - Beitrag in wissenschaftlicher ZeitschriftPublikation Engineering efficient hole transport layer Ferrihydrite-MXene on BiVO4 photoanodes for photoelectrochemical water splitting: Work function and conductivity regulated(Elsevier, 2022) Bai, Weihao; Zhou, Ye; Peng, Gang; Wang, Jinnan; Li, Aimin; Corvini, PhilippeAlthough great interest is focused on development of semiconductor photoanodes for efficient photoelectrochemical (PEC) water splitting, the pressing bottleneck to address the intrinsic charge transport for enhancement of PEC performance still remains to be resolved. Herein, hole transport layer (Fh-MXene) constructed by doping of MXene (Ti3C2) in Ferrihydrite (Fh) is loaded on BiVO4 photoanode. This novel BiVO4@Fh-MXene photoanode achieves high current density of 4.55 mA cm−2 at 1.23 V versus reversible hydrogen electrode (vs. RHE), exhibiting excellent photostability. From electrochemical analysis and density functional theory calculations, high PEC performance is ascribed to incorporation of Fh-MXene as hole transport layer, enhancing conductivity and water oxidation reaction. Notably, MXene can improve band alignment of BiVO4/Fh-MXene interface by tuning work function, which strengthens the built-in electric field for more efficient hole extraction. This work provides a simple method to design photoanodes with efficient charge transport layers for feasible PEC water splitting application.01A - Beitrag in wissenschaftlicher ZeitschriftPublikation Ultrafine-Mn2O3@N-doped porous carbon hybrids derived from Mn-MOFs: Dual-reaction centre catalyst with singlet oxygen-dominant oxidation process(Elsevier, 2022) Xie, Zhiqun; Lyu, Zhiping; Wang, Jinnan; Li, Aimin; Corvini, PhilippeUltrafine-Mn2O3@N-doped porous carbon hybrids [Mn2O3@NC] derived from Mn-MOFs was constructed with 1O2 and O2−• as main Reactive oxygen species (ROS). Cation-π bonds and N-Mn complexation induced the formation of electron-rich Mn centre which provided electron for peroxymonosulfate activation to produce radicals, accompanying with generation of 1O2 via chain reaction. Notably, the porous structure of N-doped carbon shell could not only facilitate free radical recombination for generation of 1O2 but also provide adsorption sites for organics. On the other hand, as electron-poor centre, N-doped carbon shell could improve the electrons transfer from organic intermediate radicals to electron-rich Mn centre via π -π reaction, C-O-Mn and C-N-Mn bonds, which promote the redox of Mn to avoid peroxymonosulfate invalid decomposition. Being attributed to synergistic effects of dual-reaction centres and strong oxidation ability of 1O2, Mn2O3@NC achieved high mineralization of BPA at low-dose peroxymonosulfate (0.033 g/L).01A - Beitrag in wissenschaftlicher ZeitschriftPublikation Special issue in memory of Valter Tandoi (IRSA-CNR) - A life-long commitment to environmental biotechnology(Elsevier, 25.05.2021) Rosetti, Simona; Corvini, Philippe; Majone, Mauro01A - Beitrag in wissenschaftlicher ZeitschriftPublikation BiOBr/ Bi4O5Br2/PDI constructed for visible-light degradation of endocrine disrupting chemicals. Synergistic effects of bi-heterojunction and oxygen evolution(Elsevier, 01.04.2022) Wang, Haoyi; Zhou, Ye; Wang, Jinnan; Li, Aimin; Corvini, PhilippeTo remove endocrine disrupting chemicals (EDCs), visible-light response photocatalyst BiOBr/Bi4O5Br2/perylene diimide (PDI) with bi-heterojunction was constructed. Under visible-light irradiation, BiOBr/Bi4O5Br2/PDI could degrade 90% Bisphenol A (BPA) within 75 min, while degrade 100% 17α-ethynyl estradiol (EE2) and 17β-estradiol (E2) within 15 min. Radicals quenching experiment and EPR indicated both •O2– and holes were the main substances for EDCs degradation, and the possible degradation pathway of EDCs are proposed based on the LC-MS analysis results. In the composite of BiOBr/Bi4O5Br2/PDI, the matching energy band structure between Bi4O5Br2 and BiOBr facilitated the formation of heterojunction for strengthening the space charge separation. Meanwhile, PDI with strong photosensitivity combined with BiOBr/Bi4O5Br2 not only enhanced visible-light photocatalytic activity but also broadened the light-harvesting range. Owning to the unique one-dimensional conjugated structure and internal electric field effect, PDI could also promote the photo-carriers transfer and separation. With the bi-heterojunction effect, photo-generated electrons were transferred to BiOBr conduction band while holes were accumulated on PDI valence band. Simultaneously, holes could oxidize water with the production of oxygen following being reduced to •O2– by photo-generated electrons. Even under oxygen-poor conditions, the production of •O2– can reach 32.7 × 10-5mol•g−1•h−1, resulting in more than 85% BPA degradation within 75 min.01A - Beitrag in wissenschaftlicher ZeitschriftPublikation Hierarchical nano-vesicles with bimetal-encapsulated for peroxymonosulfate activation. Singlet oxygen-dominated oxidation process(Elsevier, 01.04.2022) Lyu, Zhiping; Xu, Menglu; Wang, Jinnan; Li, Aimin; Corvini, PhilippeHierarchical nano-vesicles with bimetal-encapsulated (FeCu1.5O3@NV) was designed for peroxymonosulfate (PMS) activation with the 1O2-dominated oxidation process. Different from previous core–shell metal-loaded catalysts, FeCu1.5O3 was encapsulated in hollow zeolite spheres, and these zeolite sphere units assembled to construct hierarchical nano-vesicles. Owning to mesoporous shell and abundant interior cavity, FeCu1.5O3@NV could enrich reactants in cavity for enhancing the contact with active sites. The flexible surface of bimetal oxides strengthened the affinity with surface adsorbates and substrates, accelerating the electron transfer between reactants. DFT calculation indicated that FeCu1.5O3@NV possessed strong binding affinity for BPA and PMS, facilitating PMS activation and BPA degradation inside of hollow sphere units. Being attributed to the synergistic effect of bimetal redox couples and hierarchical nano-vesicle structure, large amounts of 1O2 could be generated through two pathways for BPA degradation. The first pathway is the reaction between bimetal redox couples and PMS, and the second is the chain reaction of O2•−. Due to bimetal oxides uniformly encapsulated in hierarchical nano-vesicles, FeCu1.5O3@NV possessed high catalytic stability with negligible metal leaching. Even after 5 cycles, BPA removal could still remain 100%.01A - Beitrag in wissenschaftlicher Zeitschrift