Institut für Ecopreneurship

Dauerhafte URI für die Sammlunghttps://irf.fhnw.ch/handle/11654/26

Listen

Ergebnisse nach Hochschule und Institut

Gerade angezeigt 1 - 10 von 11
  • Publikation
    Insights into the applications of 3D bioprinting for bioremediation technologies
    (Elsevier, 2021) Ke, Zhuang; Obamwonyi, Osagie; Kolvenbach, Boris; Ji, Rong; Liu, Shuangjiang; Jiang, Jiandong; Corvini, Philippe
    A plethora of organic pollutants such as pesticides, polycyclic and halogenated aromatic hydrocarbons, and emerging pollutants, such as flame retardants, is continuously being released into the environment. This poses a huge threat to the society in terms of environmental pollution, agricultural product quality, and general safety. Therefore, effective removal of organic pollutants from the environment has become an important challenge to be addressed. As a consequence of the recent and rapid developments in additive manufacturing, 3D bioprinting technology is playing an important role in the pharmaceutical industry. At the same time, an increasing number of microorganisms suitable for the production of biomaterials with complex structures and functions using 3D bioprinting technology, have been identified. This article briefly discusses the principles, advantages, and disadvantages of different 3D bioprinting technologies for pollutant removal. Furthermore, the feasibility and challenges of developing bioremediation technologies based on 3D bioprinting have also been discussed
    01A - Beitrag in wissenschaftlicher Zeitschrift
  • Publikation
    Biodeterioration affecting efficiency and lifetime of plastic-based photovoltaics
    (Elsevier, 16.09.2020) Schmidt, Felix; Lenz, Markus; Schaeffer, Andreas; Zimmermann, Yannick; Alves dos Reis Benatto, Gisele; Kolvenbach, Boris; Krebs, Frederik
    The low environmental impact of electricity generation using solar cells crucially depends on high energy-conversion efficiencies, long lifetimes and a minimal energy and material demand during production. Emerging thin-film photovoltaics such as perovskites on plastic substrates could hold promise to fulfil all these requirements. Under real-world operating conditions photovoltaic operation is challenged by biological stressors, which have not been incorporated for evaluation in any test. Such stressors cause biodeterioration, which impairs diverse, apparently inert materials such as rock, glass and steel and therefore could significantly affect the function and stability of plastic-based solar cells. Given that different photovoltaic technologies commonly use similar materials, the biodeterioration mechanisms reviewed here may possibly affect the efficiency and lifetimes of several technologies, if they occur sufficiently fast (during the expected lifetime of photovoltaics). Once the physical integrity of uppermost module layers is challenged by biofilm growth microbially mediated dissolution and precipitation reactions of photovoltaic functional materials are very likely to occur. The biodeterioration of substrates and seals also represents emission points for the release of potentially harmful photovoltaic constituents to the environment
    01A - Beitrag in wissenschaftlicher Zeitschrift
  • Publikation
    Biodegradation of sulfamethoxazole by a bacterial consortium of Achromobacter denitrificans PR1 and Leucobacter sp. GP
    (Springer, 12/2018) Reis, Ana C.; Cvancarova Småstuen, M.; Liu, Ying; Lenz, Markus; Hettich, Timm; Kolvenbach, Boris; Corvini, Philippe; Nunes, Olga C.
    In the last decade, biological degradation and mineralization of antibiotics have been increasingly reported feats of environmental bacteria. The most extensively described example is that of sulfonamides that can be degraded by several members of Actinobacteria and Proteobacteria. Previously, we reported sulfamethoxazole (SMX) degradation and partial mineralization by Achromobacter denitrificans strain PR1, isolated from activated sludge. However, further studies revealed an apparent instability of this metabolic trait in this strain. Here, we investigated this instability and describe the finding of a low-abundance and slow-growing actinobacterium, thriving only in co-culture with strain PR1. This organism, named GP, shared highest 16S rRNA gene sequence similarity (94.6–96.9%) with the type strains of validly described species of the genus Leucobacter. This microbial consortium was found to harbor a homolog to the sulfonamide monooxygenase gene (sadA) also found in other sulfonamide-degrading bacteria. This gene is overexpressed in the presence of the antibiotic, and evidence suggests that it codes for a group D flavin monooxygenase responsible for the ipso-hydroxylation of SMX. Additional side reactions were also detected comprising an NIH shift and a Baeyer–Villiger rearrangement, which indicate an inefficient biological transformation of these antibiotics in the environment. This work contributes to further our knowledge in the degradation of this ubiquitous micropollutant by environmental bacteria.
    01A - Beitrag in wissenschaftlicher Zeitschrift
  • Publikation
    Ipso-substitution--the hidden gate to xenobiotic degradation pathways
    (Elsevier, 2015) Ricken, Benjamin; Kolvenbach, Boris; Corvini, Philippe
    01A - Beitrag in wissenschaftlicher Zeitschrift
  • Publikation
    Degradation of sulfonamide antibiotics by Microbacterium sp. strain BR1 - elucidating the downstream pathway
    (Elsevier, 2015) Ricken, Benjamin; Fellmann, Oliver; Kohler, Hans-Peter E.; Schäffer, Andreas; Corvini, Philippe; Kolvenbach, Boris
    01A - Beitrag in wissenschaftlicher Zeitschrift
  • Publikation
    Biomineralisierung von Selen: Von Abwasserbehandlung zu Ressourcen-Wiedergewinnung
    (2015) Lenz, Markus; Kolvenbach, Boris; Corvini, Philippe
    06 - Präsentation
  • Publikation
    Enhanced Transformation of Tetrabromobisphenol A by Nitrifiers in Nitrifying Activated Sludge
    (American Chemical Society, 2015) Li, Fangjie; Jiang, Bingqi; Nastold, Peter; Kolvenbach, Boris; Chen, Jianqiu; Wang, Lianhong; Guo, Hongyan; Corvini, Philippe; Ji, Rong
    01A - Beitrag in wissenschaftlicher Zeitschrift
  • Publikation
    New insights into biological sulfonamide degradation
    (2015) Kolvenbach, Boris; Ricken, Benjamin; Fellmann, Oliver; Kohler, Hans-Peter E.; Schäffer, Andreas; Corvini, Philippe
    06 - Präsentation
  • Publikation
    Insights into the sulfonamide degrading protein complex
    (2015) Ricken, Benjamin; Bucher, Andreas; Mariossi, Andrea; Fellmann, Oliver; Adaixo, Ricardo; Schäffer, Andreas; Corvini, Philippe; Kolvenbach, Boris; Kohler, Hans-Peter E.; Leu, Cedric
    06 - Präsentation
  • Publikation
    Elucidating the genetic basis for sulfonamide degradation in isolates with diverse phylogenetic background
    (2015) Kolvenbach, Boris; Ricken, Benjamin; Corvini, Philippe; Reis, Ana C.; Nunes, Olga C.; Manaia, Célia M.; Strnad, Hynek; Vlcek, Cestmir
    06 - Präsentation