Institut für Ecopreneurship

Dauerhafte URI für die Sammlunghttps://irf.fhnw.ch/handle/11654/26

Listen

Ergebnisse nach Hochschule und Institut

Gerade angezeigt 1 - 2 von 2
  • Publikation
    Bioleaching and toxicity of metallurgical wastes
    (Elsevier, 09.09.2020) Potysz, Anna; Lenz, Markus; Hedwig, Sebastian
    Metallurgical wastes contain metals that are unrecovered during industrial processing. The disposal of these wastes is technically difficult due to the potential release of metals through weathering. Therefore, alternative management methods are currently sought. The high leaching susceptibility of these wastes combined with the need for alternative sources of rare and critical metals creates a need for residual element recovery. This study evaluated the leaching potential of lead matte and copper slag through chemical mineral acid leaching as well as indirect bioleaching with organic acids and direct bioleaching using Acidithiobacillus thiooxidans. The leaching efficiency of these acids was compared based on different normality equivalents. Additionally, the effects of pulp density (1–10%) and extraction time (24–48 h) were assessed. Slag toxicity was assessed with a germination test in concentrated and diluted leachates using Brassica juncea. The results demonstrated that copper slag is particularly suitable for chemical treatment because as much as 91 wt.% Cu and 85 wt.% Zn or 70 wt.% Cu and 81 wt.% Zn were extracted using HNO3 or bacterial leaching, respectively. The residual slag was characterized by significant metal depletion and the presence of gypsum, rendering it more suitable for further use or disposal. Lead matte released 65 wt.% Cu and 8 wt.% Zn using mineral acid leaching while 70 wt.% Cu and 12 wt.% Zn were released using bacterial leaching. Further process optimization is needed for lead matte to generate residue depletion in toxic metals. Toxicity assessment showed toxic characteristics in metal-loaded leachates originating from waste treatment that inhibited germination rates and root development.
    01A - Beitrag in wissenschaftlicher Zeitschrift
  • Publikation
    Biotechnological strategies for the recovery of valuable and critical raw materials from waste electrical and electronic equipment (WEEE) – A review
    (Elsevier, 01/2019) Işıldar, Arda; Lenz, Markus; Du Laing, Gijs; Cesaro, Alessandra; Marra, Alessandra; Panda, Sandeep; Akcil, Ata; Kucuker, Mehmet Ali; Kuchta, Kerstin; van Hullebusch, Eric D.
    Critical raw materials (CRMs) are essential in the development of novel high-tech applications. They are essential in sustainable materials and green technologies, including renewable energy, emissionfree electric vehicles and energy-efficient lighting. However, the sustainable supply of CRMs is a major concern. Recycling end-of-life devices is an integral element of the CRMs supply policy of many countries. Waste electrical and electronic equipment (WEEE) is an important secondary source of CRMs. Currently, pyrometallurgical processes are used to recycle metals from WEEE. These processes are deemed imperfect, energy-intensive and non-selective towards CRMs. Biotechnologies are a promising alternative to the current industrial best available technologies (BAT). In this review, we present the current frontiers in CRMs recovery from WEEE using biotechnology, the biochemical fundamentals of these bio-based technologies and discuss recent research and development (R&D) activities. These technologies encompass biologically induced leaching (bioleaching) from various matrices,biomass-induced sorption (biosorption), and bioelectrochemical systems (BES).
    01A - Beitrag in wissenschaftlicher Zeitschrift