Listen
4 Ergebnisse
Ergebnisse nach Hochschule und Institut
Publikation Quality evaluation methods for wastewater treatment plant data(IWA Publishing, 2008) Thomann, MichaelNon identified systematic errors in data sets can cause severe problems inducing wrong decisions in function control, process modelling or planning of new treatment infrastructure. In this paper statistical methods are shown to identify systematic errors in full-scale WWTP data sets. With a redundant mass balance approach analyzing five different mass balances, systematic errors of about 10%–20% compared to the input fluxes can be identified at a 5%-significance level. A Shewhart control-chart approach to survey the data quality of on-line-sensors allows a statistical as well as a fast graphical analysis of the measurement process. A 19 month data set indicates that NO3−, PO4− and NH4− on-line analyzers in the filter effluent and MLSS sensors in the aeration tanks were not disturbed by any systematic error for 85–95% of the measuring time. The in-control-interval (±3·standard deviation) has a width of ±12–17% (NO3-N), ±35–40% (PO4-P), ±83% (NH4-N) and ±12–15% (TS) of the measured reference value.01A - Beitrag in wissenschaftlicher ZeitschriftPublikation Perceived drivers and barriers in the governance of wastewater treatment and reuse in India. Insights from a two-round Delphi study(Elsevier, 07/2022) Breitenmoser, Lena; Cuadrado Quesada, Gabriela; N, Anshuman; Bassi, Nitin; Dkhar, Nathaniel Bhakupar; Phukan, Mayuri; Kumar, Saurabh; Naga Babu, Andraju; Kierstein, Anjin; Campling, Paul; Hooijmans, Christine MariaAbstract Wastewater treatment and reuse practices are limited in India despite the known benefits of preventing water resources pollution and contributing to sustainable production and consumption systems. We identify the perceived key drivers and barriers to wastewater treatment and reuse governance in a two-round Delphi study, including literature and case study analyses and consultation with 75 panelists. Panelists indicated that the most significant driver for wastewater treatment and water reuse is persistent water scarcity that necessitates diversification to alternative water supplies. In contrast, the most significant barriers are the lack of enforcement of pollution monitoring and control, the lack of an umbrella directive for integrated water resources management, and insufficient collaboration between responsible governmental organizations, central and state water authorities. Given the absence of central guidelines, only a few Indian states such as Maharashtra, Gujarat or Punjab have adopted effective governance structures. These states showcase that defined reuse standards can create successful wastewater treatment and reuse practices but require target-based regulations which are enforced and regularly monitored and financing mechanisms for their long-term operation. The new effluent discharge standards by the National Green Tribunal, the government support programmes, and increasing water scarcity in many parts of India will supposedly drive innovative wastewater treatment and reuse structures. Panelists agreed that efforts are needed to develop technology guiding frameworks following the fit-for-purpose principle and that strengthening institutional and monitoring capacity is crucial to increase confidence in the quality of recovered water resources, create demand, and ultimately safeguard human health and the environment.01A - Beitrag in wissenschaftlicher ZeitschriftPublikation Detection of SARS-CoV-2 in raw and treated wastewater in Germany – Suitability for COVID-19 surveillance and potential transmission risks(Elsevier, 10.01.2021) Westhaus, Sandra; Weber, Frank-Andreas; Schiwy, Sabrina; Linnemann, Volker; Brinkmann, Markus; Widera, Marek; Greve, Carola; Janke, Axel; Hollert, Henner; Wintgens, Thomas; Ciesek, SandraWastewater-based monitoring of the spread of the new SARS-CoV-2 virus, also referred to as wastewater-based epidemiology (WBE), has been suggested as a tool to support epidemiology. An extensive sampling campaign, including nine municipal wastewater treatment plants, has been conducted in different cities of the Federal State of North Rhine-Westphalia (Germany) on the same day in April 2020, close to the first peak of the corona crisis. Samples were processed and analysed for a set of SARS-CoV-2-specific genes, as well as pan-genotypic gene sequences also covering other coronavirus types, using reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Additionally, a comprehensive set of chemical reference parameters and bioindicators was analysed to characterize the wastewater quality and composition. Results of the RT-qPCR based gene analysis indicate the presence of SARS-CoV-2 genetic traces in different raw wastewaters. Furthermore, selected samples have been sequenced using Sanger technology to confirm the specificity of the RT-qPCR and the origin of the coronavirus. A comparison of the particle-bound and the dissolved portion of SARS-CoV-2 virus genes shows that quantifications must not neglect the solid-phase reservoir. The infectivity of the raw wastewater has also been assessed by viral outgrowth assay with a potential SARS-CoV-2 host cell line in vitro, which were not infected when exposed to the samples. This first evidence suggests that wastewater might be no major route for transmission to humans. Our findings draw attention to the need for further methodological and molecular assay validation for enveloped viruses in wastewater.01A - Beitrag in wissenschaftlicher ZeitschriftPublikation Integrated technological and management solutions for wastewater treatment and efficient agricultural reuse in Egypt, Morocco, and Tunisia(Wiley, 30.03.2018) Oertlé, EmmanuelMediterranean‐African countries (MACs) face a major water crisis. The annual renewable water resources are close to the 500 m3/capita threshold of absolute water scarcity, and water withdrawals exceed total renewable water resources by 30%. Such a low water availability curbs economic development in agriculture, which accounts for 86% of freshwater consumption. The analysis of the current situation of wastewater treatment, irrigation, and water management in MACs and of the research projects targeted to these countries indicates the need for 1) an enhanced capacity to analyze water stress, 2) the development of water management strategies capable of including wastewater reuse, and 3) development of locally adapted water treatment and irrigation technologies. This analysis shaped the MADFORWATER project (www.madforwater.eu), whose goal is to develop a set of integrated technological and management solutions to enhance wastewater treatment, wastewater reuse for irrigation, and water efficiency in agriculture in Egypt, Morocco, and Tunisia. MADFORWATER develops and adapts technologies for the production of irrigation‐quality water from drainage canals and municipal, agro‐industrial, and industrial wastewaters and technologies for water efficiency and reuse in agriculture, initially validated at laboratory scale, to 3 hydrological basins in the selected MACs. Selected technologies will be further adapted and validated in 4 demonstration plants of integrated wastewater treatment and reuse. Integrated strategies for wastewater treatment and reuse targeted to the selected basins are developed, and guidelines for the development of integrated water management strategies in other basins of the 3 target MACs will be produced. The social and technical suitability of the developed technologies and nontechnological tools in relation to the local context is evaluated with the participation of MAC stakeholders and partners. Guidelines on economic instruments and policies for the effective implementation of the proposed water management solutions in the target MACs will be developed. Integr Environ Assess Manag 2018;14:447–462. © 2018 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals, Inc. on behalf of Society of Environmental Toxicology & Chemistry (SETAC)01A - Beitrag in wissenschaftlicher Zeitschrift