Hochschule für Life Sciences FHNW

Dauerhafte URI für den Bereichhttps://irf.fhnw.ch/handle/11654/22

Listen

Bereich: Suchergebnisse

Gerade angezeigt 1 - 4 von 4
  • Publikation
    Experimental assessment of the performances of an anisotropic magnetoresistive sensor after exposure to strong magnetic fields
    (IEEE, 2023) Vergne, Céline; Nicolas, Hugo; Madec, Morgan; Hemm-Ode, Simone; Guzman, Raphael; Pascal, Joris
    On-chip magnetometers are already integrated within long-term implants such as cardiac implantable electronic devices. They are also good candidates to be integrated within the next generations of brain stimulation electrodes to provide their position and orientation. In all cases, long-term implants are expected to be at least certified as MRI conditional. We investigated the resilience to the exposure to 3 T and 7 T of an anisotropic magnetoresistive sensor integrating a set/reset function. The sensitivity, non-linearity, and offset of a batch of 63 identical sensors were not affected by the exposure. These preliminary results provide new insights on the usability of magnetoresistive sensors for biomedical applications requiring MRI conditionality.
    04B - Beitrag Konferenzschrift
  • Publikation
    A novel assistive method for rigidity evaluation during deep brain stimulation surgery using acceleration sensors
    (American Association of Neurological Surgeons, 09/2017) Shah, Ashesh; Coste, Jérôme; Lemaire, Jean-Jaques; Schkommodau, Erik; Taub, Ethan; Guzman, Raphael; Hemm-Ode, Simone
    01A - Beitrag in wissenschaftlicher Zeitschrift
  • Publikation
    Intraoperative quantitative tremor evaluation in deep brain stimulation surgery
    (09/2016) Shah, Ashesh; Coste, Jérôme; Lemaire, Jean-Jaques; Taub, Ethan; Schüpbach, W.M. Michael; Pollo, Claudio; Guzman, Raphael; Wardell, Karin; Schkommodau, Erik; Hemm-Ode, Simone
    06 - Präsentation
  • Publikation
    Intraoperative acceleration measurements to quantify tremor during deep brain stimulation surgery
    (Springer, 2016) Shah, Ashesh; Coste, Jérôme; Lemaire, Jean-Jaques; Taub, Ethan; Schüpbach, W.M. Michael; Pollo, Claudio; Schkommodau, Erik; Guzman, Raphael; Hemm-Ode, Simone
    Deep brain stimulation (DBS) surgery is extensively used in the treatment of movement disorders. Nevertheless, methods to evaluate the clinical response during intraoperative stimulation tests to identify the optimal position for the implantation of the chronic DBS lead remain subjective. In this paper, we describe a new, versatile method for quantitative intraoperative evaluation of improvement in tremor with an acceleration sensor that is mounted on the patient’s wrist during surgery. At each anatomical test position, the improvement in tremor compared to the initial tremor is estimated on the basis of extracted outcome measures. This method was tested on 15 tremor patients undergoing DBS surgery in two centers. Data from 359 stimulation tests were acquired. Our results suggest that accelerometric evaluation detects tremor changes more sensitively than subjective visual ratings. The effective stimulation current amplitudes identified from the quantitative data (1.1 ± 0.8 mA) are lower than those identified by visual evaluation (1.7 ± 0.8 mA) for similar improvement in tremor. Additionally, if these data had been used to choose the chronic implant position of the DBS lead, 15 of the 26 choices would have been different. These results show that our method of accelerometric evaluation can potentially improve DBS targeting.
    01A - Beitrag in wissenschaftlicher Zeitschrift