Hochschule für Life Sciences FHNW

Dauerhafte URI für den Bereichhttps://irf.fhnw.ch/handle/11654/22

Listen

Bereich: Suchergebnisse

Gerade angezeigt 1 - 6 von 6
  • Publikation
    Lipophilic salts and lipid-based formulations for bridging the food effect gap of venetoclax
    (Elsevier, 01/2022) Koehl, Niklas; Henze, Laura; Holm, Rene; Kuentz, Martin; Keating, John; De Vijlder, Thomas; Marx, Andreas; Griffin, Brendan
    Lipid based formulations (LBF) have shown to overcome food dependent bioavailability for some poorly water-soluble drugs. However, the utility of LBFs can be limited by low dose loading due to a low drug solubility in LBF vehicles. This study investigated the solubility and drug loading increases in LBFs using lipophilic counterions to form lipophilic salts of venetoclax. Venetoclax docusate was formed from venetoclax free base and verified by 1H NMR. Formation of stable venetoclax-fatty acid associations with either oleic acid or decanoic acid were attempted, however, the molecular associations were less consistent based on 1H NMR. Venetoclax docusate displayed a up to 6.2-fold higher solubility in self-emulsifying drug delivery systems (SEDDS) when compared to the venetoclax free base solubility resulting in a higher dose loading. A subsequent bioavailability study in landrace pigs demonstrated a 2.5-fold higher bioavailability for the lipophilic salt containing long chain SEDDS compared to the commercially available solid dispersion Venclyxto® in the fasted state. The bioavailability of all lipophilic salt SEDDS in the fasted state was similar to Venclyxto® in the fed state. This study confirmed that lipophilic drug salts increase the dose loading in LBFs and showed that lipophilic salt-SEDDS combinations may be able to overcome bioavailability limitations of drugs with low inherent dose loading in lipid vehicles. Furthermore, the present study demonstrated the utility of a LBF approach, in combination with lipophilic salts, to overcome food dependent variable oral bioavailability of drugs.
    01A - Beitrag in wissenschaftlicher Zeitschrift
  • Publikation
    Rational selection of bio-enabling oral drug formulations. A PEARRL commentary
    (Elsevier, 05/2021) Kuentz, Martin; Kronseder, Christian; Holm, Rene; Saal, Christoph; Griffin, Brendan
    New drug candidates often require bio-enabling formation technologies such as lipid-based formulations, solid dispersions, or nanosized drug formulations. Development of such more sophisticated delivery systems generally requires higher resource investment compared to a conventional oral dosage form, which might slow down clinical development. To achieve the biopharmaceutical objectives while enabling rapid cost effective development, it is imperative to identify a suitable formulation technique for a given drug candidate as early as possible. Hence many companies have developed internal decision trees based mostly on prior organizational experience, though they also contain some arbitrary elements. As part of the EU funded PEARRL project, a number of new decision trees are here proposed that reflect both the current scientific state of the art and a consensus among the industrial project partners. This commentary presents and discusses these, while also going beyond this classical expert approach with a pilot study using emerging machine learning, where the computer suggests formulation strategy based on the physicochemical and biopharmaceutical properties of a molecule. Current limitations are discussed and an outlook is provided for likely future developments in this emerging field of pharmaceutics.
    01A - Beitrag in wissenschaftlicher Zeitschrift
  • Publikation
    Approaches to increase mechanistic understanding and aid in the selection of precipitation inhibitors for supersaturating formulations – a PEARRL review
    (Wiley, 05/2018) Price, Daniel J.; Ditzinger, Felix; Koehl, Niklas; Jankovic, Sandra; Tsakiridou, Georgia; Nair, Anita; Holm, Rene; Kuentz, Martin; Dressman, Jennifer; Saal, Christoph
    Objectives Supersaturating formulations hold great promise for delivery of poorly soluble active pharmaceutical ingredients (APIs). To profit from supersaturating formulations, precipitation is hindered with precipitation inhibitors (PIs), maintaining drug concentrations for as long as possible. This review provides a brief overview of supersaturation and precipitation, focusing on precipitation inhibition. Trial‐and‐error PI selection will be examined alongside established PI screening techniques. Primarily, however, this review will focus on recent advances that utilise advanced analytical techniques to increase mechanistic understanding of PI action and systematic PI selection. Key findings Advances in mechanistic understanding have been made possible by the use of analytical tools such as spectroscopy, microscopy and mathematical and molecular modelling, which have been reviewed herein. Using these techniques, PI selection can be guided by molecular rationale. However, more work is required to see widespread application of such an approach for PI selection. Summary Precipitation inhibitors are becoming increasingly important in enabling formulations. Trial‐and‐error approaches have seen success thus far. However, it is essential to learn more about the mode of action of PIs if the most optimal formulations are to be realised. Robust analytical tools, and the knowledge of where and how they can be applied, will be essential in this endeavour.
    01A - Beitrag in wissenschaftlicher Zeitschrift
  • Publikation
    Pharmaceutical excipients — quality, regulatory and biopharmaceutical considerations
    (Elsevier, 2016) Elder, David; Kuentz, Martin; Holm, Rene
    01A - Beitrag in wissenschaftlicher Zeitschrift
  • Publikation
    Methodology of oral formulation selection in the pharmaceutical industry
    (Elsevier, 25.05.2016) Kuentz, Martin; Holm, Rene; Elder, David
    Pharmaceutical formulations have to fulfil various requirements with respect to their intended use, either in the development phase or as a commercial product. New drug candidates with their specific properties confront the formulation scientist with industrial challenges for which a strategy is needed to cope with limited resources, stretched timelines as well as regulatory requirements. This paper aims at reviewing different methodologies to select a suitable formulation approach for oral delivery. Exclusively small-molecular drugs are considered and the review is written from an industrial perspective. Specific cases are discussed starting with an emphasis on poorly soluble compounds, then the topics of chemically labile drugs, low-dose compounds, and modified release are reviewed. Due to the broad scope of this work, a primary focus is on explaining basic concepts as well as recent trends. Different strategies are discussed to approach industrial formulation selection, which includes a structured product development. Examples for such structured development aim to provide guidance to formulators and finally, the recent topic of a manufacturing classification system is presented. It can be concluded that the field of oral formulation selection is particularly complex due to both multiple challenges as well as opportunities so that industrial scientists have to employ tailored approaches to design formulations successfully.
    01A - Beitrag in wissenschaftlicher Zeitschrift
  • Publikation
    Antibiotic Resistance: The Need For a Global Strategy
    (Elsevier, 2016) Elder, David; Kuentz, Martin; Holm, Rene
    The development of antibiotic resistance is a major problem for mankind and results in fatal consequences on a daily basis across the globe. There are a no. of reasons for this situation including increasing globalization with worldwide travel, health tourism, over use and ineffective use (both in man and animals)​, and counterfeiting of the antimicrobial drug products we have available currently. Although there are huge economical, demog., legal and logistic differences among the global communities, there are also differences regarding the best approach to dealing with antibiotic resistance. However, as resistant bacteria do not respect international borders, there is clearly a need for a global strategy to minimize the spread of antibiotic resistance, to optimize the use of antibiotics, and to facilitate the development of new and effective medications. This commentary provides an insight into the issues and some of the ongoing programs to ensure an effective treatment for the future.
    01A - Beitrag in wissenschaftlicher Zeitschrift