Listen
4 Ergebnisse
Bereich: Suchergebnisse
Publikation Dynemicin analogs: Syntheses, methods of preparation and use(United States Patent and Trademark Office, 04.01.1994) Smith, Adrian L.; Hwang, Chan-Kou; Wendeborn, Sebastian; Nicolaou, Kyriacos C.; Schreiner, Erwin P.; Stahl, Wilhelm; Dai, Wei-Min; Maligres, Peter E.; Suzuki, ToshioA fused ring system compound is disclosed that contains an epoxide group on one side or the fused rings and an enediyne macrocyclic ring on the other side of the fused rings. The compounds have DNA-cleaving, antimicrobial and tumor growth-inhibiting properties. Chimeric compounds having the fused ring system compound as an aglycone bounded to (i) a sugar moiety as the ogligosaccharide portion or(ii) a monoclonal antibody or antibody combining site portion thereof that immunoreacts with target tumor cells are also disclosed. Compositions containing a compound or a chimer are disclosed, as are methods or preparing a compound.12 - PatentPublikation Enantiomeric dynemicin analogs, preparation and use thereof(World Intellectual Property Organization, 25.11.1993) Smith, Adrian L.; Wendeborn, Sebastian; Nicolaou, Kyriacos; Schreiner, Erwin P.; Dai, Wei-Min; Susuki, ToshioAn enantiomer of a fused ring system compound is disclosed that contains an epoxide group on one side of the fused rings and an enediyne macrocyclic ring on the other side of the fused rings. The enantiomeric compounds have DNA-cleaving, antimicrobial and tumor growth-inhibiting properties that are enhanced over their racemates. Chimeric compounds having the enantiomeric fused ring system compound as an aglycone bonded to (i) a sugar moiety as the oligosaccharide portion or (ii) a monoclonal antibody or antibody combining site portion thereof that immunoreacts with target tumor cells are also disclosed. Compositions containing an enatiomeric compound or an enantiomeric chimer are disclosed, as are methods of preparing an enantiomeric compound.12 - PatentPublikation Sulfur amino acid status controls selenium methylation in pseudomonas tolaasii. Identification of a novel metabolite from promiscuous enzyme reactions(American Society for Microbiology, 26.05.2021) Liu, Ying; Hedwig, Sebastian; Schäffer, Andreas; Lenz, Markus; Martinez, MathieuSelenium (Se) deficiency affects many millions of people worldwide, and the volatilization of methylated Se species to the atmosphere may prevent Se from entering the food chain. Despite the extent of Se deficiency, little is known about fluxes in volatile Se species and their temporal and spatial variation in the environment, giving rise to uncertainty in atmospheric transport models. To systematically determine fluxes, one can rely on laboratory microcosm experiments to quantify Se volatilization in different conditions. Here, it is demonstrated that the sulfur (S) status of bacteria crucially determines the amount of Se volatilized. Solid-phase microextraction gas chromatography mass spectrometry showed that Pseudomonas tolaasii efficiently and rapidly (92% in 18 h) volatilized Se to dimethyl diselenide and dimethyl selenyl sulfide through promiscuous enzymatic reactions with the S metabolism. However, when the cells were supplemented with cystine (but not methionine), a major proportion of the Se (∼48%) was channeled to thus-far-unknown, nonvolatile Se compounds at the expense of the previously formed dimethyl diselenide and dimethyl selenyl sulfide (accounting for <4% of total Se). Ion chromatography and solid-phase extraction were used to isolate unknowns, and electrospray ionization ion trap mass spectrometry, electrospray ionization quadrupole time-of-flight mass spectrometry, and microprobe nuclear magnetic resonance spectrometry were used to identify the major unknown as a novel Se metabolite, 2-hydroxy-3-(methylselanyl)propanoic acid. Environmental S concentrations often exceed Se concentrations by orders of magnitude. This suggests that in fact S status may be a major control of selenium fluxes to the atmosphere. IMPORTANCE Volatilization from soil to the atmosphere is a major driver for Se deficiency. “Bottom-up” models for atmospheric Se transport are based on laboratory experiments quantifying volatile Se compounds. The high Se and low S concentrations in such studies poorly represent the environment. Here, we show that S amino acid status has in fact a decisive effect on the production of volatile Se species in Pseudomonas tolaasii. When the strain was supplemented with S amino acids, a major proportion of the Se was channeled to thus-far-unknown, nonvolatile Se compounds at the expense of volatile compounds. This hierarchical control of the microbial S amino acid status on Se cycling has been thus far neglected. Understanding these interactions—if they occur in the environment—will help to improve atmospheric Se models and thus predict drivers of Se deficiency.01A - Beitrag in wissenschaftlicher ZeitschriftPublikation Environmental chemicals affect circadian rhythms. An underexplored effect influencing health and fitness in animals and humans(Elsevier, 04/2021) Zheng, Xuehan; Zhang, Kun; Zhao, Yanbin; Fent, KarlCircadian rhythms control the life of virtually all organisms. They regulate numerous aspects ranging from cellular processes to reproduction and behavior. Besides the light-dark cycle, there are additional environmental factors that regulate the circadian rhythms in animals as well as humans. Here, we outline the circadian rhythm system and considers zebrafish (Danio rerio) as a representative vertebrate organism. We characterize multiple physiological processes, which are affected by circadian rhythm disrupting compounds (circadian disrupters). We focus on and summarize 40 natural and anthropogenic environmental circadian disrupters in fish. They can be divided into six major categories: steroid hormones, metals, pesticides and biocides, polychlorinated biphenyls, neuroactive drugs and other compounds such as cyanobacterial toxins and bisphenol A. Steroid hormones as well as metals are most studied. Especially for progestins and glucocorticoids, circadian dysregulation was demonstrated in zebrafish on the molecular and physiological level, which comprise mainly behavioral alterations. Our review summarizes the current state of knowledge on circadian disrupters, highlights their risks to fish and identifies knowledge gaps in animals and humans. While most studies focus on transcriptional and behavioral alterations, additional effects and consequences are underexplored. Forthcoming studies should explore, which additional environmental circadian disrupters exist. They should clarify the underlying molecular mechanisms and aim to better understand the consequences for physiological processes.01A - Beitrag in wissenschaftlicher Zeitschrift