Hochschule für Life Sciences FHNW

Dauerhafte URI für den Bereichhttps://irf.fhnw.ch/handle/11654/22

Listen

Bereich: Suchergebnisse

Gerade angezeigt 1 - 2 von 2
  • Publikation
    Biotransformation of ritalinic acid by laccase in the presence of mediator TEMPO
    (Elsevier, 07/2018) Kobakhidze, Aza; Elisashvili, Vladimir; Corvini, Philippe; Cvancarova Småstuen, M.
    Methylphenidate is widely used as a medication for the treatment of attention deficit hyperactivity disorder (ADHD) in children. Less than 1% of methylphenidate is excreted unchanged in urine, while 80% of an oral dose is excreted as ritalinic acid (which is reportedly poorly degradable). This study aims to investigate the biotransformation of ritalinic acid by free and immobilized enzymes. The influence of various laccase mediators on biotransformation efficiency has been tested. Formation of the main transformation products has been monitored and their potential structures suggested. The effective transformation of ritalinic acid was observed only in the presence of 2,2,6,6-tetramethylpiperidine 1-oxyl mediator (TEMPO). The most effective enzyme was the laccase of T. versicolor 159. The main transformation product was an N-methyl derivative of ritalinic acid. Ritalinic acid was also reduced to aldehyde and alcohol, and a broad spectrum of intermediate complexes with oxoammonium ion of TEMPO were detected. This is the first time the biotransformation of ritalinic acid has been investigated in detail.
    01A - Beitrag in wissenschaftlicher Zeitschrift
  • Publikation
    Production of superparamagnetic nanobiocatalysts for green chemistry applications
    (Springer, 23.04.2016) Gasser, Christoph; Ammann, Erik; Schäffer, Andreas; Shahgaldian, Patrick; Corvini, Philippe
    Immobilization of enzymes on solid supports is a convenient method for increasing enzymatic stability and enabling enzyme reuse. In the present work, a sorption-assisted surface conjugation method was developed and optimized to immobilize enzymes on the surface of superparamagnetic nanoparticles. An oxidative enzyme, i.e., laccase from Trametes versicolor was used as model enzyme. The immobilization method consists of the production of superparamagnetic nanoparticles by co-precipitation of FeCl2 and FeCl3. Subsequently, the particle surface is modified with an organosilane containing an amino group. Next, the enzymes are adsorbed on the particle surface before a cross-linking agent, i.e., glutaraldehyde is added which links the amino groups on the particle surface with the amino groups of the enzymes and leads to internal cross-linking of the enzymes as well. The method was optimized using response surface methodology regarding optimal enzyme and glutaraldehyde amounts, pH, and reaction times. Results allowed formulation of biocatalysts having high specific enzymatic activity and improved stability. The biocatalysts showed considerably higher stability compared with the dissolved enzymes over a pH range from 3 to 9 and in the presence of several chemical denaturants. To demonstrate the reusability of the immobilized enzymes, they were applied as catalysts for the production of a phenoxazinone dye. Virtually, 100 % of the precursor was transformed to the dye in each of the ten conducted reaction cycles while on average 84.5 % of the enzymatic activity present at the beginning of a reaction cycle was retained after each cycle highlighting the considerable potential of superparamagnetic biocatalysts for application in industrial processes.
    01A - Beitrag in wissenschaftlicher Zeitschrift