Bayer-Oglesby, Lucy

Lade...
Profilbild
E-Mail-Adresse
Geburtsdatum
Projekt
Organisationseinheiten
Berufsbeschreibung
Nachname
Bayer-Oglesby
Vorname
Lucy
Name
Bayer-Oglesby, Lucy

Suchergebnisse

Gerade angezeigt 1 - 10 von 15
  • Publikation
    Improvements in PM10 Exposure and Reduced Rates of Respiratory Symptoms in a Cohort of Swiss Adults (SAPALDIA)
    (American Thoracic Society, 2009) Schindler, Christian; Keidel, Dirk; Gerbase, Margaret W.; Zemp, Elisabeth; Bettschart, Robert; Brändli, Otto; Brutsche, Martin H.; Burdet, Luc; Karrer, Werner; Knöpfli, Bruno; Pons, Marco; Rapp, Regula; Bayer-Oglesby, Lucy; Künzli, Nino; Schwartz, Joel; Liu, Lee-Jane S.; Ackermann-Liebrich, Ursula; Rochat, Thierry [in: American Journal of Respiratory and Critical Care Medicine]
    Rationale: Reductions in mortality following improvements in air quality were documented by several studies, and our group found, in an earlier analysis, that decreasing particulate levels attenuate lung function decline in adults. Objectives: We investigated whether decreases in particulates with an aerodynamic diameter of less than 10 microm (PM10) were associated with lower rates of reporting respiratory symptoms (i.e., decreased morbidity) on follow-up. Methods: The present analysis includes 7,019 subjects who underwent detailed baseline examinations in 1991 and a follow-up interview in 2002. Each subject was assigned model-based estimates of average PM10 during the 12 months preceding each health assessment and the difference was used as the exposure variable of interest (DeltaPM10). Analyses were stratified by symptom status at baseline and associations between DeltaPM10 and change in symptom status during follow-up were adjusted for important baseline characteristics, smoking status at follow-up, and season. We then estimated adjusted odds ratios for symptoms at follow-up and numbers of symptomatic cases prevented due to the observed reductions in PM10. Measurements and main results: Residential exposure to PM10 was lower in 2002 than in 1991 (mean decline 6.2 microg/m3; SD = 3.9 microg/m3). Estimated benefits (per 10,000 persons) attributable to the observed changes in PM10-levels were: 259 (95% confidence interval [CI]: 102-416) fewer subjects with regular cough, 179 (95% CI, 30-328) fewer subjects with chronic cough or phlegm and 137 (95% CI, 9-266) fewer subjects with wheezing and breathlessness. Conclusions: Reductions in particle levels in Switzerland over the 11-year follow-up period had a beneficial effect on respiratory symptoms among adults.
    01A - Beitrag in wissenschaftlicher Zeitschrift
  • Publikation
    Characterization of source-specific air pollution exposure for a large population-based Swiss cohort (SAPALDIA)
    (National Institute of Environmental Health Sciences, 2007) Liu, L.-J. Sally; Curjuric, Ivan; Keidel, Dirk; Heldstab, Jürg; Künzli, Nino; Bayer-Oglesby, Lucy; Ackermann-Liebrich, Ursula; Schindler, Christian [in: Environmental Health Perspectives]
    Background: Although the dispersion model approach has been used in some epidemiologic studies to examine health effects of traffic-specific air pollution, no study has evaluated the model predictions vigorously. Methods: We evaluated total and traffic-specific particulate matter < 10 and < 2.5 microm in aero-dynamic diameter (PM(10), PM(2.5)), nitrogren dioxide, and nitrogen oxide concentrations predicted by Gaussian dispersion models against fixed-site measurements at different locations, including traffic-impacted, urban-background, and alpine settings between and across cities. The model predictions were then used to estimate individual subjects' historical and cumulative exposures with a temporal trend model. Results: Modeled PM(10) and NO(2) predicted at least 55% and 72% of the variability of the measured PM(10) and NO(2), respectively. Traffic-specific pollution estimates correlated with the NO(x) measurements (R(2) >or=0.77) for background sites but not for traffic sites. Regional background PM(10) accounted for most PM(10) mass in all cities. Whereas traffic PM(10) accounted for < 20% of the total PM(10), it varied significantly within cities. The modeling error for PM(10) was similar within and between cities. Traffic NO(x) accounted for the majority of NO(x) mass in urban areas, whereas background NO(x) accounted for the majority of NO(x) in rural areas. The within-city NO(2) modeling error was larger than that between cities. Conclusions: The dispersion model predicted well the total PM(10), NO(x), and NO(2) and traffic-specific pollution at background sites. However, the model underpredicted traffic NO(x) and NO(2) at traffic sites and needs refinement to reflect local conditions. The dispersion model predictions for PM(10) are suitable for examining individual exposures and health effects within and between cities.
    01A - Beitrag in wissenschaftlicher Zeitschrift
  • Publikation
    Annoyance due to air pollution in Europe
    (Oxford University Press, 2007) Jacquemin, Bénédicte; Sunyer, Jordi; Forsberg, Bertil; Götschi, Thomas; Bayer-Oglesby, Lucy; Ackermann-Liebrich, Ursula; de Marco, Roberto; Heinrich, Joachim; Jarvis, Deborah; Torén, Kjell; Künzli, Nino [in: International Journal of Epidemiology]
    Background Annoyance due to air pollution is a subjective score of air quality, which has been incorporated into the National Environmental monitoring of some countries. The objectives of this study are to describe the variations in annoyance due to air pollution in Europe and its individual and environmental determinants. Methods This study took place in the context of the European Community Respiratory Health Survey II (ECRHS II) that was conducted during 1999–2001. It included 25 centres in 12 countries and 7867 randomly selected adults from the general population. Annoyance due to air pollution was self-reported on an 11-point scale. Annual mean mass concentration of fine particles (PM2.5) and its sulphur (S) content were measured in 21 centres as a surrogate of urban air pollution. Results Forty-three per cent of participants reported moderate annoyance (1–5 on the scale) and 14% high annoyance (≥6) with large differences across centres (2–40% of high annoyance). Participants in the Northern European countries reported less annoyance. Female gender, nocturnal dyspnoea, phlegm and rhinitis, self-reported car and heavy vehicle traffic in front of the home, high education, non-smoking and exposure to environmental tobacco smoke were associated with higher annoyance levels. At the centre level, adjusted means of annoyance scores were moderately associated with sulphur urban levels (slope 1.43 μg m−3, standard error 0.40, r = 0.61). Conclusions Annoyance due to air pollution is frequent in Europe. Individuals’ annoyance may be a useful measure of perceived ambient quality and could be considered a complementary tool for health surveillance.
    01A - Beitrag in wissenschaftlicher Zeitschrift
  • Publikation
    Reduced exposure to PM10 and attenuated age-related decline in lung function
    (Massachusetts Medical Society, 2007) Downs, Sara H.; Schindler, Christian; Liu, L.-J. Sally; Keidel, Dirk; Bayer-Oglesby, Lucy; Brutsche, Martin H.; Gerbase, Margaret W.; Keller, Roland; Künzli, Nino; Leuenberger, Philippe; Probst-Hensch, Nicole M.; Tschopp, Jean-Marie; Zellweger, Jean-Pierre; Rochat, Thierry; Schwartz, Joel; Ackermann-Liebrich, Ursula [in: New England Journal of Medicine]
    Background: Air pollution has been associated with impaired health, including reduced lung function in adults. Moving to cleaner areas has been shown to attenuate adverse effects of air pollution on lung function in children but not in adults. Methods: We conducted a prospective study of 9651 adults (18 to 60 years of age) randomly selected from population registries in 1990 and assessed in 1991, with 8047 participants reassessed in 2002. There was complete information on lung volumes and flows (e.g., forced vital capacity [FVC], forced expiratory volume in 1 second [FEV1], FEV1 as a percentage of FVC, and forced expiratory flow between 25 and 75% of the FVC [FEF25–75]), smoking habits, and spatially resolved concentrations of particulate matter that was less than 10 μm in aerodynamic diameter (PM10) from a validated dispersion model assigned to residential addresses for 4742 participants at both the 1991 and the 2002 assessments and in the intervening years. Results: Overall exposure to individual home outdoor PM10 declined over the 11-year follow-up period (median, −5.3 μg per cubic meter; interquartile range, −7.5 to −4.2). In mixed-model regression analyses, with adjustment for confounders, PM10 concentrations at baseline, and clustering within areas, there were significant negative associations between the decrease in PM10 and the rate of decline in FEV1 (P=0.045), FEV1 as a percentage of FVC (P=0.02), and FEF25–75 (P=0.001). The net effect of a decline of 10 μg of PM10 per cubic meter over an 11-year period was to reduce the annual rate of decline in FEV1 by 9% and of FEF25–75 by 16%. Cumulative exposure in the interval between the two examinations showed similar associations. Conclusions: Decreasing exposure to airborne particulates appears to attenuate the decline in lung function related to exposure to PM10. The effects are greater in tests reflecting small-airway function.
    01A - Beitrag in wissenschaftlicher Zeitschrift
  • Publikation
    Living near main streets and respiratory symptoms in adults. the Swiss Cohort Study on Air Pollution and Lung Diseases in Adults
    (Oxford University Press, 10.10.2006) Bayer-Oglesby, Lucy; Schindler, Christian; Hazenkamp-von Arx, Marianne E.; Braun-Fahrländer, Charlotte; Keidel, Dirk; Rapp, Regula; Künzli, Nino; Braendli, Otto; Burdet, Luc; Sally Liu, L-J; Leuenberger, Philippe; Ackermann-Liebrich, Ursula [in: American Journal of Epidemiology]
    The Swiss Cohort Study on Air Pollution and Lung Diseases in Adults (SAPALDIA), conducted in 1991 (SAPALDIA 1) in eight areas among 9,651 randomly selected adults aged 18-60 years, reported associations among the prevalence of respiratory symptoms, nitrogen dioxide, and particles with an aerodynamic diameter of less than 10 microg/m3. Later, 8,047 subjects reenrolled in 2002 (SAPALDIA 2). The effects of individually assigned traffic exposures on reported respiratory symptoms were estimated, while controlling for socioeconomic and exposure- and health-related factors. The risk of attacks of breathlessness increased for all subjects by 13% (95% confidence interval: 3, 24) per 500-m increment in the length of main street segments within 200 m of the home and decreased in never smokers by 12% (95% confidence interval: 0, 22) per 100-m increment in distance from home to a main street. Living within 20 m of a main street increased the risks of regular phlegm by 15% (95% confidence interval: 0, 31) and wheezing with breathing problems by 34% (95% confidence interval: 0, 79) in never smokers. In 2002, the effects related to road distance were different from those in 1991, which could be due to changes in the traffic pollution mixture. These findings among a general population provide strong confirmation that living near busy streets leads to adverse respiratory health effects.
    01A - Beitrag in wissenschaftlicher Zeitschrift
  • Publikation
    Long-term Source-Specific Air Pollution Exposure Characterization for a Large Population-Based Swiss Cohort (SAPALDIA)
    (Lippincott Williams & Wilkins, 2006) Sally Liu, L J.; Curjuric, Ivan; Hazenkamp, Marianne; Keidel, Dirk; Bayer-Oglesby, Lucy; Ackermann-Liebrich, Ursula; Schindler, Christian [in: Epidemiology]
    Although evidence on acute health effects related to traffic exhaust is accumulating, there is less information regarding long-term exposure of source-specific air pollution in the general population. The SAPALDIA study is a long-term air pollution study that included 7990 subjects from 8 areas in Switzerland with the first health examination in 1991 and the second examination in 2002. Each area was monitored with up to 3 monitoring sites for PM, NO2, and other gaseous pollutants. In 1999–2000, a sampling campaign was conducted for PM10, PM2.5, and black smoke at 16 Swiss sites. In 2002–2003, passive NO2 measurements were collected strategically over the year outside and inside approximately 60 homes per area. Annual average concentrations of source-specific and total PM2.5, PM10, and NOx were estimated using a Gaussian dispersion model with GIS to match individual residences of the SAPALDIA subjects. This paper examines the performance of the dispersion model, variation of source-specific air pollution exposures, and the implications of these findings to long-term air pollution epidemiologic studies. For PM10 in 2000, modeled values predicted 68% of the variability in the measurements. For NO2 in 2000, the model predicted the measured values with an R2 over 0.80. The R2 for traffic-specific pollutant predictions ranged between 0.44 (P = 0.08) for traffic-related PM2.5 and 0.81 (P < 0.01) for traffic-related NO2 for sites with low traffic impacts. However, when traffic sites were included in the comparisons, the R2 was lower, ranging between 0.41 for traffic-originated PM10 and 0.51 for traffic-originated NO2. Nevertheless, our preliminary results indicated that variance in traffic-originated pollutants accounted for up to 45% of the variance in total PM10, 69% of that in total PM2.5, and 91% of that in NOx. In addition, we smoothed actual NO2 measurements outside individual residences and correlated the resulting smoothed estimates at these sites with NO2 estimates from the dispersion model. To obtain good agreement between the measured and modeled surfaces (r > 0.60), the minimal spatial smoothing window was found to range between 200 m in rural Davos and 1.75 km for urban Basel. Our results indicate that sites affected largely by regional and urban background pollution are properly presented by the model. Locations impacted by local traffic, however, may not be adequately predicted by the model and need either fine-tuning of the model or additional parameters to reflect local conditions. Predictions of exposures to source-specific air pollution are being examined against a series of respiratory and cardiovascular health effects in other papers.
    01A - Beitrag in wissenschaftlicher Zeitschrift
  • Publikation
    Determinants of indoor air concentrations of PM2.5, black smoke and NO2 in six European cities (EXPOLIS study)
    (Elsevier, 2006) Lai, Hak Kan; Bayer-Oglesby, Lucy; Colvile, Roy N.; Götschi, Thomas; Jantunen, Matt J.; Künzli, Nino; Kulinskaya, Elena; Schweizer, Christian; Nieuwenhuijsen, Mark J. [in: Atmospheric Environment]
    EXPOLIS was a large-scale population-based study of urban adult exposures to multiple pollutants, and was conducted between 1996 and 2000 in six European cities. Measurements made using standardised protocols in Athens (Greece), Basel (Switzerland), Helsinki (Finland), Milan (Italy), Oxford (UK), and Prague (Czech Republic), allow similarities and differences between contrasting European regions, climates and populations to be identified. Two consecutive days of home indoor and home outdoor measurements of fine particulate matter (PM2.5), black smoke (BS), and nitrogen dioxide (NO2) were carried out at the homes of adult participants on different dates and seasons during the sampling period. Regression models with interactions searched by all-possible subset method were used to assess the city effects and the determinants of home indoor PM2.5 (adj R2 ¼ 0:60, n ¼ 413), BS (adj R2 ¼ 0:79, n ¼ 382) and NO2 (adj R2 ¼ 0:67, n ¼ 302) levels. Both bi-directional (positive and negative signs of associations) and unidirectional (consistently either positive or negative sign of associations) city effects on different determinants in each indoor model were shown. Smoking, gas-stove usage, outdoor temperature, and wind speed were the common determinants in all three indoor models. Other determinants, including the presence of wooden material, heating, and being located in suburb area, were also identified. They were likely linked to cultural and socio-economic factors.
    01A - Beitrag in wissenschaftlicher Zeitschrift
  • Publikation
    Indoor time-microenvironment-activity patterns in seven regions of Europe
    (Springer, 2006) Schweizer, Christian; Edwards, Rufus David; Bayer-Oglesby, Lucy; Gauderman, William James; Ilacqua, Vito; Juhani Jantunen, Matti; Lai, Hak Kan; Nieuwenhuijsen, Mark; Künzli, Nino [in: Journal of Exposure Science and Environmental Epidemiology]
    Personal exposure to environmental substances is largely determined by time-microenvironment-activity patterns while moving across locations or microenvironments. Therefore, time-microenvironment-activity data are particularly useful in modeling exposure. We investigated determinants of workday time-microenvironment-activity patterns of the adult urban population in seven European cities. The EXPOLIS study assessed workday time-microenvironment-activity patterns among a total of 1427 subjects (age 19-60 years) in Helsinki (Finland), Athens (Greece), Basel (Switzerland), Grenoble (France), Milan (Italy), Prague (Czech Republic), and Oxford (UK). Subjects completed time-microenvironment-activity diaries during two working days. We present time spent indoors--at home, at work, and elsewhere, and time exposed to tobacco smoke indoors for all cities. The contribution of sociodemographic factors has been assessed using regression models. More than 90% of the variance in indoor time-microenvironment-activity patterns originated from differences between and within subjects rather than between cities. The most common factors that were associated with indoor time-microenvironment-activity patterns, with similar contributions in all cities, were the specific work status, employment status, whether the participants were living alone, and whether the participants had children at home. Gender and season were associated with indoor time-microenvironment-activity patterns as well but the effects were rather heterogeneous across the seven cities. Exposure to second-hand tobacco smoke differed substantially across these cities. The heterogeneity of these factors across cities may reflect city-specific characteristics but selection biases in the sampled local populations may also explain part of the findings. Determinants of time-microenvironment-activity patterns need to be taken into account in exposure assessment, epidemiological analyses, exposure simulations, as well as in the development of preventive strategies that focus on time-microenvironment-activity patterns that ultimately determine exposures.
    01A - Beitrag in wissenschaftlicher Zeitschrift
  • Publikation
    Time–activity relationships to VOC personal exposure factors
    (Elsevier, 2006) Edwards, Rufus D.; Schweizer, Christian; Llacqua, Vito; Lai, Hak Kan; Jantunen, Matti; Bayer-Oglesby, Lucy; Künzli, Nino [in: Atmospheric Environment]
    Social and demographic factors have been found to play a significant role in differences between time–activity patterns of population subgroups. Since time–activity patterns largely influence personal exposure to compounds as individuals move across microenvironments, exposure subgroups within the population may be defined by factors that influence daily activity patterns. Socio-demographic and environmental factors that define time–activity subgroups also define quantifiable differences in VOC personal exposures to different sources and individual compounds in the Expolis study. Significant differences in exposures to traffic-related compounds ethylbenzene, m- and p-xylene and o-xylene were observed in relation to gender, number of children and living alone. Categorization of exposures further indicated time exposed to traffic at work and time in a car as important determinants. Increased exposures to decane, nonane and undecane were observed for males, housewives and self-employed. Categorization of exposures indicated exposure subgroups related to workshop use and living downtown. Higher exposures to 3-carene and a-pinene commonly found in household cleaning products and fragrances were associated with more children, while exposures to traffic compounds ethylbenzene, m- and p-xylene and o-xylene were reduced with more children. Considerable unexplained variation remained in categorization of exposures associated with home product use and fragrances, due to individual behavior and product choice. More targeted data collection methods in VOC exposure studies for these sources should be used. Living alone was associated with decreased exposures to 2-methyl-1-propanol and 1-butanol, and traffic-related compounds. Identification of these subgroups may help to reduce the large amount of unexplained variation in VOC exposure studies. Further they may help in assessing impacts of urban planning that result in changes in behavior of individuals, resulting in shifts in the patterns of exposure experienced by the population.
    01A - Beitrag in wissenschaftlicher Zeitschrift
  • Publikation
    Decline of Ambient Air Pollution Levels and Improved Respiratory Health in Swiss Children
    (National Institute of Environmental Health Sciences, 11/2005) Bayer-Oglesby, Lucy; Grize, Leticia; Gassner, Markus; Takken-Sahli, Kathy; Sennhauser, Felix H.; Neu, Urs; Schindler, Christian; Braun-Fahrländer, Charlotte [in: Environmental Health Perspectives]
    The causality of observed associations between air pollution and respiratory health in children is still subject to debate. If reduced air pollution exposure resulted in improved respiratory health of children, this would argue in favor of a causal relation. We investigated whether a rather moderate decline of air pollution levels in the 1990s in Switzerland was associated with a reduction in respiratory symptoms and diseases in school children. In nine Swiss communities, 9,591 children participated in cross-sectional health assessments between 1992 and 2001. Their parents completed identical questionnaires on health status and covariates. We assigned to each child an estimate of regional particles with an aerodynamic diameter < 10 μg/m3 (PM10) and determined change in PM10 since the first survey. Adjusted for socioeconomic, health-related, and indoor factors, declining PM10 was associated in logistic regression models with declining prevalence of chronic cough [odds ratio (OR) per 10-μg/m3 decline = 0.65, 95% confidence interval (CI), 0.54–0.79], bronchitis (OR = 0.66; 95% CI, 0.55–0.80), common cold (OR = 0.78; 95% CI, 0.68–0.89), nocturnal dry cough (OR = 0.70; 95% CI, 0.60–0.83), and conjunctivitis symptoms (OR = 0.81; 95% CI, 0.70–0.95). Changes in prevalence of sneezing during pollen season, asthma, and hay fever were not associated with the PM10 reduction. Our findings show that the reduction of air pollution exposures contributes to improved respiratory health in children. No threshold of adverse effects of PM10 was apparent because we observed the beneficial effects for relatively small changes of rather moderate air pollution levels. Current air pollution levels in Switzerland still exceed limit values of the Swiss Clean Air Act; thus, children’s health can be improved further.
    01A - Beitrag in wissenschaftlicher Zeitschrift