Sawant, Parantapa

Lade...
Profilbild
E-Mail-Adresse
Geburtsdatum
Projekt
Organisationseinheiten
Berufsbeschreibung
Nachname
Sawant
Vorname
Parantapa
Name
Parantapa Sawant

Suchergebnisse

Gerade angezeigt 1 - 7 von 7
Vorschaubild nicht verfügbar
Publikation

Simulationsgestützte Systemauslegung für sorptionsgestützte, solare Kälteanlagen

2022, Bürger, Adrian, Sawant, Parantapa, Wittstadt, Ursula, Altmann-Dieses, Angelika, Pfafferott, Jens

Die fluktuierende Verfügbarkeit regenerativer Energiequellen stellt eine Herausforderung bei der Planung und Auslegung regenerativer Gebäudeenergiesysteme dar. Die in einem System benötigten Speicherkapazitäten hängen dabei sowohl von der eingesetzten Regelungsstrategie als auch von den temperaturabhängigen Wirkungsgraden der Anlagenkomponenten ab. Genauere Einblicke in das Betriebsverhalten eines Gesamtsystems können dynamische Simulationen liefern, die eine Analyse der Systemtemperaturen und von Teilenergiekennwerten ermöglichen.

Vorschaubild nicht verfügbar
Publikation

Development and experimental evaluation of grey-box models of a microscale polygeneration system for application in optimal control

2020, Sawant, Parantapa, Bürger, Adrian, Doan, Minh Dang, Felsmann, Clemens, Pfafferott, Jens

Vorschaubild nicht verfügbar
Publikation

Multiperspective analysis of microscale trigeneration systems and their role in the crowd energy concept

2015, Sawant, Parantapa, Meftah, Naim, Pfafferott, Jens

The energy system of the future will transform from the current centralised fossil based to a decentralised, clean, highly efficient, and intelligent network. This transformation will require innovative technologies and ideas like trigeneration and the crowd energy concept to pave the way ahead. Even though trigeneration systems are extremely energy efficient and can play a vital role in the energy system, turning around their deployment is hindered by various barriers. These barriers are theoretically analysed in a multiperspective approach and the role decentralised trigeneration systems can play in the crowd energy concept is highlighted. It is derived from an initial literature research that a multiperspective (technological, energy-economic, and user) analysis is necessary for realising the potential of trigeneration systems in a decentralised grid. And to experimentally quantify these issues we are setting up a microscale trigeneration lab at our institute and the motivation for this lab is also briefly introduced.

Vorschaubild nicht verfügbar
Publikation

Experimental demonstration of grid-supportive scheduling of a polygeneration system using economic-MPC

2021-11-12, Sawant, Parantapa, Bürger, Adrian, Felsmann, Clemens, Pfafferott, Jens

Drawing off the technical flexibility of building polygeneration systems to support a rapidly expanding renewable electricity grid requires the application of advanced controllers like model predictive control (MPC) that can handle multiple inputs and outputs, uncertainties in forecast data, and plant constraints amongst other features. In this original work, an economic-MPC-based optimal scheduling of a real-world building energy system is demonstrated and its performance is evaluated against a conventional controller. The demonstration includes the steps to integrate an optimisation-based supervisory controller into a standard building automation and control system with off-the-shelf HVAC components and usage of state-of-art algorithms for solving complex nonlinear mixed integer optimal control problems. With the MPC, quantitative benefits in terms of 6–12% demand-cost savings and qualitative benefits in terms of better controller adaptability and hardware-friendly operation are identified. Further research potential for improving the MPC framework in terms of field-level stability, minimising constraint violations, and inter-system communication for its deployment in a prosumer-network is also identified.

Lade...
Vorschaubild
Publikation

Application and analysis of a model based controller for cooling towers in compression chiller plants

2020, Sawant, Parantapa, Ho, Eric, Pfafferott, Jens

Cooling towers or recoolers are one of the major consumers of electricity in a HVAC plant. The implementation and analysis of advanced control methods in a practical application and its comparison with conventional controllers is necessary to establish a framework for their feasibility especially in the field of decentralised energy systems. A standard industrial controller, a PID and a model based controller were developed and tested in an experimental set-up using market-ready components. The characteristics of these controllers such as settling time, control difference, and frequency of control actions are compared based on the monitoring data. Modern controllers demonstrated clear advantages in terms of energy savings and higher accuracy and a model based controller was easier to set-up than a PID.

Lade...
Vorschaubild
Publikation

Demonstration of optimal scheduling for a building heat pump system using eEconomic-MPC

2021, Sawant, Parantapa, Villegas Mier, Oscar, Schmidt, Michael, Pfafferott, Jens

It is considered necessary to implement advanced controllers such as model predictive control (MPC) to utilize the technical flexibility of a building polygeneration system to support the rapidly expanding renewable electricity grid. These can handle multiple inputs and outputs, uncertainties in forecast data, and plant constraints, amongst other features. One of the main issues identified in the literature regarding deploying these controllers is the lack of experimental demonstrations using standard components and communication protocols. In this original work, the economic-MPC-based optimal scheduling of a real-world heat pump-based building energy plant is demonstrated, and its performance is evaluated against two conventional controllers. The demonstration includes the steps to integrate an optimization-based supervisory controller into a typical building automation and control system with off-the-shelf HVAC components and usage of state-of-art algorithms to solve a mixed integer quadratic problem. Technological benefits in terms of fewer constraint violations and a hardware-friendly operation with MPC were identified. Additionally, a strong dependency of the economic benefits on the type of load profile, system design and controller parameters was also identified. Future work for the quantification of these benefits, the application of machine learning algorithms, and the study of forecast deviations is also proposed.

Vorschaubild nicht verfügbar
Publikation

Quasi-first-principle based grey-box modelling of microscale trigeneration systems for application in automatic control

2018, Sawant, Parantapa, Pfafferott, Jens, Felsmann, Clemens

With the need for automatic control based supervisory controllers for complex energy systems, comes the need for reduced order system models representing not only the non-linear behaviour of the components but also certain unknown process dynamics like their internal control logic. At the Institute of Energy Systems Technology in Offenburg we have built a real-life microscale trigeneration plant and present in this paper a rational modelling procedure that satisfies the necessary characteristics for models to be applied in model predictive control for grid-reactive optimal scheduling of this complex energy system. These models are validated against experimental data and the efficacy of the methodology is discussed. Their application in the future for the optimal scheduling problem is also briefly motivated.