Witschel, Hans Friedrich

Lade...
Profilbild
E-Mail-Adresse
Geburtsdatum
Projekt
Organisationseinheiten
Berufsbeschreibung
Nachname
Witschel
Vorname
Hans Friedrich
Name
Witschel, Hans Friedrich

Suchergebnisse

Gerade angezeigt 1 - 10 von 13
Lade...
Vorschaubild
Publikation

Practice track: a learning tracker using digital biomarkers for autistic preschoolers

2022, Sandhu, Gurmit, Kilburg, Anne, Martin, Andreas, Pande, Charuta, Witschel, Hans Friedrich, Laurenzi, Emanuele, Billing, Erik, Hinkelmann, Knut, Gerber, Aurona

Preschool children, when diagnosed with Autism Spectrum Disorder (ASD), often ex- perience a long and painful journey on their way to self-advocacy. Access to standard of care is poor, with long waiting times and the feeling of stigmatization in many social set- tings. Early interventions in ASD have been found to deliver promising results, but have a high cost for all stakeholders. Some recent studies have suggested that digital biomarkers (e.g., eye gaze), tracked using affordable wearable devices such as smartphones or tablets, could play a role in identifying children with special needs. In this paper, we discuss the possibility of supporting neurodiverse children with technologies based on digital biomark- ers which can help to a) monitor the performance of children diagnosed with ASD and b) predict those who would benefit most from early interventions. We describe an ongoing feasibility study that uses the “DREAM dataset”, stemming from a clinical study with 61 pre-school children diagnosed with ASD, to identify digital biomarkers informative for the child’s progression on tasks such as imitation of gestures. We describe our vision of a tool that will use these prediction models and that ASD pre-schoolers could use to train certain social skills at home. Our discussion includes the settings in which this usage could be embedded.

Vorschaubild nicht verfügbar
Publikation

A dialog-based tutoring system for project-based learning in information systems education

2020, Witschel, Hans Friedrich, Diwanji, Prajakta, Hinkelmann, Knut, Dornberger, Rolf

Vorschaubild nicht verfügbar
Publikation

An Ontology-based and Case-based Reasoning supported Workplace Learning Approach

2016, Emmenegger, Sandro, Thönssen, Barbara, Laurenzi, Emanuele, Martin, Andreas, Zhang Sprenger, Congyu, Hinkelmann, Knut, Witschel, Hans Friedrich

Lade...
Vorschaubild
Publikation

Adapting an Enterprise Architecture for Business Intelligence

2015, von Bergen, Pascal, Hinkelmann, Knut, Witschel, Hans Friedrich

Lade...
Vorschaubild
Publikation

Hybrid conversational AI for intelligent tutoring systems

2021, Pande, Charuta, Witschel, Hans Friedrich, Martin, Andreas, Montecchiari, Devid, Martin, Andreas, Hinkelmann, Knut, Fill, Hans-Georg, Gerber, Aurona, Lenat, Dough, Stolle, Reinhard, Harmelen, Frank van

We present an approach to improve individual and self-regulated learning in group assignments. We focus on supporting individual reflection by providing feedback through a conversational system. Our approach leverages machine learning techniques to recognize concepts in student utterances and combines them with knowledge representation to infer the student’s understanding of an assignment’s cognitive requirements. The conversational agent conducts end-to-end conversations with the students and prompts them to reflect and improve their understanding of an assignment. The conversational agent not only triggers reflection but also encourages explanations for partial solutions.

Lade...
Vorschaubild
Publikation

Learning and engineering similarity functions for business recommenders

2019, Witschel, Hans Friedrich, Martin, Andreas, Martin, Andreas, Hinkelmann, Knut, Gerber, Aurona, Lenat, Doug, Harmelen, Frank van, Clark, Peter

We study the optimisation of similarity measures in tasks where the computation of similarities is not directly visible to end users, namely clustering and case-based recommenders. In both, similarity plays a crucial role, but there are also other algorithmic components that contribute to the end result. Our suggested approach introduces a new form of interaction into these scenarios that make the use of similarities transparent to end users and thus allows to gather direct feedback about similarity from them. This happens without distracting them from their goal – rather allowing them to obtain better and more trustworthy results by excluding dissimilar items. We then propose to use the feedback in a way that incorporates machine learning for updating weights and decisions of knowledge engineers about possible additional features, based on insights derived from a summary of user feedback. The reviewed literature and our own previous empirical investigations suggest that this is the most feasible way – involving both machine and human, each in a task that they are particularly good at.

Lade...
Vorschaubild
Publikation

Workplace Learning - Providing Recommendations of Experts and Learning Resources in a Context-sensitive and Personalized Manner

2016, Emmenegger, Sandro, Laurenzi, Emanuele, Thönssen, Barbara, Zhang Sprenger, Congyu, Hinkelmann, Knut, Witschel, Hans Friedrich

Support of workplace learning is increasingly important as change in every form determines today's working world in industry and public administrations alike. Adapt quickly to a new job, a new task or a new team is a major challenge that must be dealt with ever faster. Workplace learning differs significantly from school learning as it should be strictly aligned to business goals. In our approach we support workplace learning by providing recommendations of experts and learning resources in a context-sensitive and personalized manner. We utilize user s' workplace environment, we consider their learning preferences and zone of proximal development, and compare required and acquired competencies in order to issue the best suited recommendations. Our approach is part of the European funded project Learn PAd. Applied research method is Design Science Research. Evaluation is done in an iterative process. The recommender system introduced here is evaluated theoretically based on user requirements and practically in an early evaluation process conducted by the Learn PAd application partner.

Vorschaubild nicht verfügbar
Publikation

Visualization of patterns for hybrid learning and reasoning with human involvement

2020, Witschel, Hans Friedrich, Pande, Charuta, Martin, Andreas, Laurenzi, Emanuele, Hinkelmann, Knut, Dornberger, Rolf

Vorschaubild nicht verfügbar
Publikation

Enhance classroom preparation for flipped classroom using AI and analytics

2018, Diwanji, Prajakta, Hinkelmann, Knut, Witschel, Hans Friedrich, Hammoudi, Slimane, Smialek, Michal, Camp, Olivier, Filipe, Joaquim

In a flipped classroom setting, it is important for students to come prepared for the classroom. Being prepared in advance helps students to grasp the concepts taught during classroom sessions. A recent student survey at Fachhochschule Nordwestschweiz (FHNW), Business School, Switzerland, revealed that only 27.7% students often prepared before a class and only 7% always prepared before a class. The main reason for not preparing for classes was lack of time and workload. A literature review study revealed that there is a growth of the use of Artificial Intelligence (AI), for example, chatbots and teaching assistants, which support both teachers and students for classroom preparation. There is also a rise in the use of data analytics to support tutor decision making in real time. However, many of these tools are based on external motivation factors like grading and assessment. Intrinsic motivation among students is more rewarding in the long term. This paper proposes an application based on AI and data analysis that focuses on intrinsically motivating and preparing students in a flipped classroom approach.

Lade...
Vorschaubild
Publikation

KPIs 4 Workplace Learning

2016, Emmenegger, Sandro, Thönssen, Barbara, Hinkelmann, Knut, Witschel, Hans Friedrich, Ana, Fred, Aveiro, David

Enterprises and Public Administrations alike need to ensure that newly hired employees are able to learn the ropes fast. Employers also need to support continuous workplace learning. Work-place learning should be strongly related to business goals and thus, learning goals should direct-ly add to business goals. To measure achievement of both learning and business goals we pro-pose augmented Key Performance Indicators (KPI). In our research we applied model driven engineering. Hence we developed a model for a Learning Scorecard comprising of business and learning goals and their KPIs represented in an ontology. KPI performance values and scores are calculated with formal rules based on the SPARQL Inferencing Notation. Results are presented in a dashboard on an individual level as well as on a team/group level. Requirements, goals and KPIs as well as performance measurement were defined in close co-operation with Marche Region, business partner in Learn PAd.