Gysel, Martin

Lade...
Profilbild
E-Mail-Adresse
Geburtsdatum
Projekt
Organisationseinheiten
Berufsbeschreibung
Nachname
Gysel
Vorname
Martin
Name
Martin Gysel

Suchergebnisse

Gerade angezeigt 1 - 10 von 18
Vorschaubild nicht verfügbar
Publikation

Influence of gas-to-particle partitioning on the hygroscopic and droplet activation behaviour of α-pinene secondary organic aerosol

2009-08-05, Jurányi, Zsófia, Gysel, Martin, Duplissy, Jonathan, Weingartner, Ernest, Tritscher, Torsten, Dommen, Josef, Henning, Silvia, Ziese, Markus, Kiselev, Alexej, Stratmann, Frank, George, Ingrid, Baltensperger, Urs

Hygroscopic properties of secondary organic aerosol (SOA) formed by photooxidation of different concentrations (10–27 or 220–270 ppb) of α-pinene precursor were investigated at different relative humidities (RH) using a hygroscopicity tandem differential mobility analyzer (HTDMA, RH = 95–97%) and using the mobile version of the Leipzig Aerosol Cloud Interaction Simulator (LACIS-mobile, RH = 98–99.3%). In addition, the cloud condensation nuclei (CCN) activity was measured applying two CCN counters (CCNC). An apparent single-hygroscopicity parameter, κ, of ∼0.09, ∼0.07–0.13, and ∼0.02–0.04 was derived from CCNC, HTDMA and LACIS data, respectively, assuming the surface tension of pure water. Closure between HTDMA and CCNC data was achieved within experimental uncertainty, whereas closure between LACIS and CCNC was only achieved by assuming a concentration-dependent surface tension reduction, consequently resulting in lower CCNC-derived κ values. Comparing different experimental techniques at varying precursor concentrations in more detail reveals further open questions. Varying precursor concentration influences hygroscopic growth factors at subsaturated RH, while it has no effect on the CCN activation. This difference in behaviour might be caused by precursor concentration-dependent surface tension depression or changing droplet solution concentration dependence of the water activity coefficient with varying SOA composition. Furthermore, evidence was found that the SOA might need several seconds to reach the equilibrium growth factor at high RH.

Vorschaubild nicht verfügbar
Publikation

Water uptake of clay and desert dust aerosol particles at sub- and supersaturated water vapor conditions

2009-04-01, Herich, Hanna, Tritscher, Torsten, Wiacek, Aldona, Gysel, Martin, Weingartner, Ernest, Lohmann, Ulrike, Baltensperger, Urs, Cziczo, Daniel J.

Airborne mineral dust particles serve as cloud condensation nuclei (CCN), thereby influencing the formation and properties of warm clouds. It is therefore of atmospheric interest how dust aerosols with different mineralogy behave when exposed to high relative humidity (RH) or supersaturation (SS) with respect to liquid water. In this study the subsaturated hygroscopic growth and the supersaturated cloud condensation nucleus activity of pure clays and real desert dust aerosols were determined using a hygroscopicity tandem differential mobility analyzer (HTDMA) and a cloud condensation nuclei counter (CCNC), respectively. Five different illite, montmorillonite and kaolinite clay samples as well as three desert dust samples (Saharan dust (SD), Chinese dust (CD) and Arizona test dust (ATD)) were investigated. Aerosols were generated both with a wet and a dry disperser. The water uptake was parameterized via the hygroscopicity parameter k. The hygroscopicity of dry generated dust aerosols was found to be negligible when compared to processed atmospheric aerosols, with CCNC derived k values between 0.00 and 0.02 (the latter corresponds to a particle consisting of 96.7% by volume insoluble material and B3.3% ammonium sulfate). Pure clay aerosols were generally found to be less hygroscopic than natural desert dust particles. The illite and montmorillonite samples had k B 0.003. The kaolinite samples were less hygroscopic and had k = 0.001. SD (k = 0.023) was found to be the most hygroscopic dry-generated desert dust followed by CD (k = 0.007) and ATD (k = 0.003). Wet-generated dust showed an increased water uptake when compared to dry-generated samples. This is considered to be an artifact introduced by redistribution of soluble material between the particles. Thus, the generation method is critically important when presenting such data. These results indicate any atmospheric processing of a fresh mineral dust particle which leads to the addition of more than B3% soluble material will significantly enhance its hygroscopicity and CCN activity.

Lade...
Vorschaubild
Publikation

A combined particle trap/HTDMA hygroscopicity study of mixed inorganic/organic aerosol particles

2008-09-19, Zardini, Alessandro A., Sjogren, S., Marcolli, Claudia, Krieger, Ulrich K., Gysel, Martin, Weingartner, Ernest, Baltensperger, Urs, Peter, Thomas

Atmospheric aerosols are often mixtures of inorganic and organic material. Organics can represent a large fraction of the total aerosol mass and are comprised of water-soluble and insoluble compounds. Increasing attention was paid in the last decade to the capability of mixed inorganic/organic aerosol particles to take up water (hygroscopicity). We performed hygroscopicity measurements of internally mixed particles containing ammonium sulfate and carboxylic acids (citric, glutaric, adipic acid) in parallel with an electrodynamic balance (EDB) and a hygroscopicity tandem differential mobility analyzer (HTDMA). The organic compounds were chosen to represent three distinct physical states. During hygroscopicity cycles covering hydration and dehydration measured by the EDB and the HTDMA, pure citric acid remained always liquid, adipic acid remained always solid, while glutaric acid could be either. We show that the hygroscopicity of mixtures of the above compounds is well described by the Zdanovskii-Stokes-Robinson (ZSR) relationship as long as the two-component particle is completely liquid in the ammonium sulfate/glutaric acid system; deviations up to 10% in mass growth factor (corresponding to deviations up to 3.5% in size growth factor) are observed for the ammonium sulfate/citric acid 1:1 mixture at 80% RH. We observe even more significant discrepancies compared to what is expected from bulk thermodynamics when a solid component is present. We explain this in terms of a complex morphology resulting from the crystallization process leading to veins, pores, and grain boundaries which allow for water sorption in excess of bulk thermodynamic predictions caused by the inverse Kelvin effect on concave surfaces.

Lade...
Vorschaubild
Publikation

Hygroscopic properties of submicrometer atmospheric aerosol particles measured with H-TDMA instruments in various environments - a review

2008-01-01, Swietlicki, Erik, Hansson, Hans-Christen, Hämeri, Kaarle, Svenningsson, Birgitta, Massling, Andreas, McFiggans, Gordon, McMurry, Peter H., Petäjä, Tuukka, Tunved, Peter, Gysel, Martin, Topping, David, Weingartner, Ernest, Baltensperger, Urs, Rissler, Jenny, Wiedensohler, Alfred, Kulmala, Markku

The hygroscopic properties play a vital role for the direct and indirect effects of aerosols on climate, as well as the health effects of particulate matter (PM) by modifying the deposition pattern of inhaled particles in the humid human respiratory tract. Hygroscopic Tandem Differential Mobility Analyzer (H-TDMA) instruments have been used in field campaigns in various environments globally over the last 25 yr to determine the water uptake on submicrometre particles at subsaturated conditions. These investigations have yielded valuable and comprehensive information regarding the particle hygroscopic properties of the atmospheric aerosol, including state of mixing. These properties determine the equilibrium particle size at ambient relative humidities and have successfully been used to calculate the activation of particles at water vapour supersaturation. This paper summarizes the existing published H-TDMA results on the sizeresolved submicrometre aerosol particle hygroscopic properties obtained from ground-based measurements at multiple marine, rural, urban and free tropospheric measurement sites. The data is classified into groups of hygroscopic growth indicating the external mixture, and providing clues to the sources and processes controlling the aerosol. An evaluation is given on how different chemical and physical properties affect the hygroscopic growth.

Lade...
Vorschaubild
Publikation

Intercomparison study of six HTDMAs. results and recommendations

2009-07-24, Duplissy, Jonathan, Gysel, Martin, Sjogren, S., Meyer, Nickolas, Good, Nicholas, Kammermann, Lukas, Michaud, Vincent, Weigel, Ralf, Martins dos Santos, Sebastiao, Gruening, Carsten, Villani, P., Laj, Paolo, Sellegri, Karine, Metzger, Axel, McFiggans, Gordon B., Wehrle, Günther, Richter, René, Dommen, Josef, Ristovski, Zoran, Baltensperger, Urs, Weingartner, Ernest

We report on an intercomparison of six different hygroscopicity tandem differential mobility analysers HTDMAs). These HTDMAs are used worldwide in laboratory experiments and field campaigns to measure the water uptake of aerosol particles and have never been intercompared. After an investigation of the different design of the instruments with their advantages and inconveniencies, the methods for calibration, validation and data analysis are presented. Measurements of nebulised ammonium sulphate as well as of secondary organic aerosol generated from a smog chamber were performed. Agreement and discrepancies between the instruments and to the theory are discussed, and final recommendations for a standard instrument are given, as a benchmark for laboratory or field experiments to ensure a high quality of HTDMA data.

Lade...
Vorschaubild
Publikation

Hygroscopicity of the submicrometer aerosol at the high-alpine site Jungfraujoch, 3580 m a.s.l., Switzerland

2008-09-30, Sjögren, Staffan, Gysel, Martin, Weingartner, Ernest, Alfarra, M. Rami, Duplissy, Jonathan, Cozic, Julie, Crosier, Jonathan, Coe, Hugh, Baltensperger, Urs

Data from measurements of hygroscopic growth of submicrometer aerosol with a hygroscopicity tandem differential mobility analyzer (HTDMA) during four campaigns at the high alpine research station Jungfraujoch, Switzerland, are presented. The campaigns took place during the years 2000, 2002, 2004 and 2005, each lasting approximately one month. Hygroscopic growth factors (GF, i.e. the relative change in particle diameter from dry diameter, D0, to diameter measured at higher relative humidity, RH) are presented for three distinct air mass types, namely for: 1) free tropospheric winter conditions, 2) planetary boundary layer influenced air masses (during a summer period) and 3) Saharan dust events (SDE). The GF values at 85% RH (D0=100 nm) were 1.40±0.11 and 1.29±0.08 for the first two situations while for SDE a bimodal GF distribution was often found. No phase changes were observed when the RH was varied between 10–90%, and the continuous water uptake could be well described with a single-parameter empirical model. The frequency distributions of the average hygroscopic growth factors and the width of the retrieved growth factor distributions (indicating whether the aerosol is internally or externally mixed) are presented, which can be used for modeling purposes. Measurements of size resolved chemical composition were performed with an aerosol mass spectrometer in parallel to the GF measurements. This made it possible to estimate the apparent ensemble mean GF of the organics (GForg) using inverse ZSR (Zdanovskii-Stokes-Robinson) modeling. GForg was found to be ~1.20 at aw=0.85, which is at the upper end of previous laboratory and field data though still in agreement with the highly aged and oxidized nature of the Jungfraujoch aerosol.

Vorschaubild nicht verfügbar
Publikation

In situ determination of atmospheric aerosol composition as a function of hygroscopic growth

2008-08-30, Herich, Hanna, Kammermann, Lukas, Gysel, Martin, Weingartner, Ernest, Baltensperger, Urs, Lohmann, Ulrike, Cziczo, Daniel J.

An in situ measurement setup to determine the chemical composition of aerosols as a function of hygroscopicity is presented. This has been done by connecting a custom‐built Hygroscopicity Tandem Differential Mobility Analyzer (HTDMA) and an Aerosol Time‐of‐Flight Mass Spectrometer (ATOFMS), commercially available from TSI (Model 3800). Single particle bipolar mass spectra from aerosols leaving the HTDMA could thus be obtained as a function of the hygroscopic growth factor. For these studies the HTDMA was set at a relative humidity of 82% and particles with a dry diameter of 260 nm were selected. The setup was first laboratory tested, after which field experiments were performed. Two data sets were obtained during wintertime 2007 in Switzerland: the first in the urban Zurich environment and the other at the remote high alpine research station Jungfraujoch (JFJ). In Zurich, several thousand mass spectra were obtained in less than 2 days of sampling due to a high aerosol loading. At the JFJ, due to low particle concentrations in free tropospheric air masses, a longer sampling period was required. Both in Zurich and at the JFJ, two different growth factor modes were observed. Results from these two locations show that most aerosol particles were a mixture of several compounds. A large contribution of organics and combustion species was found in the less hygroscopic growth mode for both locations. Noncombustion refractory material (e.g., metals, mineral dust, and fly ash) was also highly enhanced in the nonhygroscopic particles. Sulfate, normally considered highly soluble, was found to be a constituent in almost all particles independent of their hygroscopic growth factor.

Vorschaubild nicht verfügbar
Publikation

Subarctic atmospheric aerosol composition: 2. Hygroscopic growth properties

2009-07-10, Herich, Hanna, Kammermann, Lukas, Friedman, Beth, Gross, Deborah S., Weingartner, Ernest, Lohmann, Ulrike, Spichtinger, Peter, Gysel, Martin, Baltensperger, Urs, Cziczo, Daniel J.

Subarctic aerosols were sampled during July 2007 at the Abisko Scientific Research Station Stordalen site in northern Sweden with an instrument setup consisting of a custom‐built Hygroscopicity Tandem Differential Mobility Analyzer (HTDMA) connected in series to a single particle mass spectrometer. Aerosol chemical composition in the form of bipolar single particle mass spectra was determined as a function of hygroscopic growth both in situ and in real time. The HTDMA was deployed at a relative humidity of 82%, and particles with a dry mobility diameter of 260 nm were selected. Aerosols from two distinct air masses were analyzed during the sampling period. Sea salt aerosols were found to be the dominant particle group with the highest hygroscopicity. High intensities of sodium and related peaks in the mass spectra were identified as exclusive markers for large hygroscopic growth. Particles from biomass combustion were found to be the least hygroscopic aerosol category. Species normally considered soluble (e.g., sulfates and nitrates) were found in particles ranging from high to low hygroscopicity. Furthermore, the signal intensities of the peaks related to these species did not correlate with hygroscopicity.

Vorschaubild nicht verfügbar
Publikation

A study of wood burning and traffic aerosols in an Alpine valley using a multi-wavelength aethalometer

2008-09-20, Sandradewi, Jisca, Prévôt, André S.H., Weingartner, Ernest, Schmidhauser, Ralph, Gysel, Martin, Baltensperger, Urs

We present a study of aerosol light absorption using a multi-wavelength Aethalometer (l ¼ 370–950 nm) in an Alpine valley where the major local emissions of aerosols in winter are from domestic wood burning and traffic. The measurements were done in winter and summer periods in 2004 and 2005. Much stronger diurnal trends in CO, NOx and aerosol light absorption parameters were observed in winter than in summer. The average (71 S.D.) PM10 concentrations measured at this site were 31.5721.7 mg m 3 in winter and 15.8710.0 mg m 3 in summer. The highest PM10 concentrations were observed between 18:00 and 22:00 h CET in both campaigns, with 45.4721.0 mg m 3 for winter and 21.079.5 mg m 3 for summer. The average (71 S.D.) power law exponents of the absorption coefficients (also called absorption exponent) with l ¼ 370–950 nm, a370–950 nm were 1.670.25 in winter and 1.170.05 in summer. The calculation of a separately for lower and higher wavelengths (i.e., a370–520 nm and a660–950 nm) provided a better description of the wavelength dependence from the UV- to the near-IR region. The highest mean values of a370–520 nm and a660–950 nm were observed between 22:00 and 02:00 h CET in winter with 2.770.4 and 1.370.1, respectively. Comparison of a370–520 nm with CO and NOx data indicated that the relative contribution of wood burning versus traffic was responsible for the seasonal and diurnal variability of a. The seasonal and diurnal trends of a were not attributed to changes in the particle size since the aerosol volume size distributions (dV/d log D) were found to be similar in both campaigns.

Vorschaubild nicht verfügbar
Publikation

The influence of small aerosol particles on the properties of water and ice clouds

2008-08-09, Choularton, Thomas W., Bower, Keith N., Weingartner, Ernest, Crawford, Ian, Coe, Hugh, Gallagher, Martin W., Flynn, Michael, Crosier, Jonathan, Connolly, Paul, Targino, Admir Créso, Alfarra, M. Rami, Baltensperger, Urs, Sjögren, Staffan, Verheggen, Bart, Cozic, Julie, Gysel, Martin

In this paper, results are presented of the influence of small organic- and soot-containing particles on the formation of water and ice clouds. There is strong evidence that these particles have grown from nano particle seeds produced by the combustion of oil products. Two series of field experiments are selected to represent the observations made. The first is the CLoud-Aerosol Characterisation Experiment (CLACE) series of experiments performed at a high Alpine site (Jungfraujoch), where cloud was in contact with the ground and the measuring station. Both water and ice clouds were examined at different times of the year. The second series of experiments is the CLOud Processing of regional Air Pollution advecting over land and sea (CLOPAP) series, where ageing pollution aerosol from UK cities was observed, from an airborne platform, to interact with warm stratocumulus cloud in a cloud-capped atmospheric boundary layer. Combining the results it is shown that aged pollution aerosol consists of an internal mixture of organics, sulfate, nitrate and ammonium, the organic component is dominated by highly oxidized secondary material. The relative contributions and absolute loadings of the components vary with location and season. However, these aerosols act as Cloud Condensation Nuclei (CCN) and much of the organic material, along with the other species, is incorporated into cloud droplets. In ice and mixed phase cloud, it is observed that very sharp transitions (extending over just a few metres) are present between highly glaciated regions and regions consisting of supercooled water. This is a unique finding; however, aircraft observations in cumulus suggest that this kind of structure may be found in these cloud types too. It is suggested that this sharp transition is caused by ice nucleation initiated by oxidised organic aerosol coated with sulfate in more polluted regions of cloud, sometimes enhanced by secondary ice particle production in these regions.