wbacon: Weighted BACON algorithms for multivariate outlier nomination (detection) and robust linear regression

No Thumbnail Available
Author (Corporation)
Publication date
15.06.2021
Typ of student thesis
Course of study
Type
09 - Software
Editors
Editor (Corporation)
Supervisor
Parent work
Special issue
DOI of the original publication
Series
Series number
Volume
Issue / Number
Pages / Duration
Patent number
Publisher / Publishing institution
Institute for Competitiveness and Communication, Hochschule für Wirtschaft FHNW
Place of publication / Event location
Olten
Edition
Version
0.6
Programming language
R, C
Assignee
Practice partner / Client
Abstract
The BACON algorithms are methods for multivariate outlier nomination (detection) and robust linear regression by Billor, Hadi, and Velleman (2000, doi:10.1016/S0167-9473(99)00101-2). The extension to weighted problems is due to Beguin and Hulliger (2008, www150.statcan.gc.ca/n1/en/catalogue/12-001-X200800110616); see also Schoch (2021, doi:10.21105/joss.03238).
Keywords
Multivariate outlier detection, Robust linear regression
Subject (DDC)
003 - Systeme
Project
Event
Exhibition start date
Exhibition end date
Conference start date
Conference end date
Date of the last check
ISBN
ISSN
Language
Created during FHNW affiliation
Yes
Strategic action fields FHNW
Publication status
Review
Open access category
License
Citation
SCHOCH, Tobias, 2021. wbacon: Weighted BACON algorithms for multivariate outlier nomination (detection) and robust linear regression. 15 Juni 2021. Olten: Institute for Competitiveness and Communication, Hochschule für Wirtschaft FHNW. Verfügbar unter: https://irf.fhnw.ch/handle/11654/38751