Combining symbolic and sub-symbolic AI in the context of education and learning
Autor:in (Körperschaft)
Publikationsdatum
2020
Typ der Arbeit
Studiengang
Typ
04B - Beitrag Konferenzschrift
Herausgeber:in (Körperschaft)
Betreuer:in
Übergeordnetes Werk
Proceedings of the AAAI 2020 Spring Symposium on Combining Machine Learning and Knowledge Engineering in Practice (AAAI-MAKE 2020)
Themenheft
DOI der Originalpublikation
Reihe / Serie
Reihennummer
Jahrgang / Band
1
Ausgabe / Nummer
Seiten / Dauer
Patentnummer
Verlag / Herausgebende Institution
Verlagsort / Veranstaltungsort
Palo Alto
Auflage
Version
Programmiersprache
Abtretungsempfänger:in
Praxispartner:in/Auftraggeber:in
Zusammenfassung
Abstraction abilities are key to successfully mastering the Business Information Technology Programme (BIT) at the FHNW (Fachhochschule Nordwestschweiz). Object-Orientation (OO) is one example - which extensively requires analytical capabilities. For testing the OO-related capabilities a questionnaire (OO SET) for prospective and 1st year students was developed based on the Blackjack scenario. Our main target of the OO SET is to identify clusters of students which are likely to fail in the OO-related modules without a substantial amount of training. For the interpretation of the data the Kohonen Feature Map (KFM) is used which is nowadays very popular for data mining and exploratory data analysis. However, like all sub-symbolic approaches the KFM lacks to interpret and explain its results. Therefore, we plan to add - based on existing algorithms - a “postprocessing” component which generates propositional rules for the clusters and helps to improve quality management in the admission and teaching process. With such an approach we synergistically integrate symbolic and sub-symbolic artificial intelligence by building a bridge between machine learning and knowledge engineering.
Schlagwörter
Fachgebiet (DDC)
330 - Wirtschaft
Veranstaltung
AAAI 2020 Spring Symposium on Combining Machine Learning and Knowledge Engineering in Practice (AAAI-MAKE 2020)
Startdatum der Ausstellung
Enddatum der Ausstellung
Startdatum der Konferenz
23.03.2020
Enddatum der Konferenz
25.03.2020
Datum der letzten Prüfung
ISBN
ISSN
Sprache
Englisch
Während FHNW Zugehörigkeit erstellt
Ja
Zukunftsfelder FHNW
Publikationsstatus
Veröffentlicht
Begutachtung
Peer-Review der ganzen Publikation
Open Access-Status
Diamond
Zitation
TELESKO, Rainer, Stephan JÜNGLING und Phillip GACHNANG, 2020. Combining symbolic and sub-symbolic AI in the context of education and learning. In: Andreas MARTIN, Knut HINKELMANN, Hans-Georg FILL, Aurona GERBER, Doug LENAT, Reinhard STOLLE und Frank VAN HARMELEN (Hrsg.), Proceedings of the AAAI 2020 Spring Symposium on Combining Machine Learning and Knowledge Engineering in Practice (AAAI-MAKE 2020). Palo Alto. 2020. Verfügbar unter: https://doi.org/10.26041/fhnw-6675