Leverage white-collar workers with AI

Typ
04B - Beitrag Konferenzschrift
Herausgeber:in (Körperschaft)
Betreuer:in
Übergeordnetes Werk
Proceedings of the AAAI 2019 Spring Symposium on Combining Machine Learning with Knowledge Engineering (AAAI-MAKE 2019)
Themenheft
DOI der Originalpublikation
Reihe / Serie
Reihennummer
Jahrgang / Band
Ausgabe / Nummer
Seiten / Dauer
Patentnummer
Verlag / Herausgebende Institution
Verlagsort / Veranstaltungsort
Palo Alto
Auflage
Version
Programmiersprache
Abtretungsempfänger:in
Praxispartner:in/Auftraggeber:in
Zusammenfassung
Based on the example of automated meeting minutes taking, the paper highlights the potential of optimizing the allocation of tasks between humans and machines to take the particular strengths and weaknesses of both into account. In order to combine the functionality of supervised and unsupervised machine learning with rule-based AI or traditionally programmed software components, the capabilities of AI-based system actors need to be incorporated into the system design process as early as possible.
Schlagwörter
Fachgebiet (DDC)
330 - Wirtschaft
Projekt
Veranstaltung
AAAI 2019 Spring Symposium on Combining Machine Learning with Knowledge Engineering (AAAI-MAKE 2019)
Startdatum der Ausstellung
Enddatum der Ausstellung
Startdatum der Konferenz
25.03.2019
Enddatum der Konferenz
27.03.2019
Datum der letzten Prüfung
ISBN
ISSN
Sprache
Englisch
Während FHNW Zugehörigkeit erstellt
Ja
Zukunftsfelder FHNW
Publikationsstatus
Veröffentlicht
Begutachtung
Peer-Review der ganzen Publikation
Open Access-Status
Diamond
Lizenz
'https://creativecommons.org/licenses/by/4.0/'
Zitation
JÜNGLING, Stephan und Angelin HOFER, 2019. Leverage white-collar workers with AI. In: Andreas MARTIN, Knut HINKELMANN, Aurona GERBER, Doug LENAT und Peter CLARK (Hrsg.), Proceedings of the AAAI 2019 Spring Symposium on Combining Machine Learning with Knowledge Engineering (AAAI-MAKE 2019). Palo Alto. 2019. Verfügbar unter: https://doi.org/10.26041/fhnw-6456