The impact of misclassifications and outliers on imputation methods

Typ
01A - Beitrag in wissenschaftlicher Zeitschrift
Herausgeber:innen
Herausgeber:in (Körperschaft)
Betreuer:in
Übergeordnetes Werk
Journal of Applied Statistics
Themenheft
Link
Reihe / Serie
Reihennummer
Jahrgang / Band
51
Ausgabe / Nummer
14
Seiten / Dauer
2894-2928
Patentnummer
Verlag / Herausgebende Institution
Taylor & Francis
Verlagsort / Veranstaltungsort
London
Auflage
Version
Programmiersprache
Abtretungsempfänger:in
Praxispartner:in/Auftraggeber:in
Zusammenfassung
Many imputation methods have been developed over the years and tested mostly under ideal settings. Surprisingly, there is no detailed research on how imputation methods perform when the idealized assumptions about the distribution of data and/or model assumptions are partly not fulfilled. This research looks into the susceptibility of imputation techniques, particularly in relation to outliers, misclassifications, and incorrect model specifications. This is crucial knowledge about how well the methods convince in everyday life because, in reality, conditions are usually not ideal, and model assumptions may not hold. The data may not fit the defined models well. Outliers distort the estimates, and misclassifications reduce the quality of most imputation methods. Several different evaluation measures are discussed, from comparing imputed values with true values or comparing certain statistics, from the performance of classifiers to the variance of estimated parameters. Some well-known imputation methods are compared based on real data and simulations. It turns out that robust conditional imputation methods outperform other methods for real data and simulation settings.
Schlagwörter
Fachgebiet (DDC)
510 - Mathematik
Projekt
Veranstaltung
Startdatum der Ausstellung
Enddatum der Ausstellung
Startdatum der Konferenz
Enddatum der Konferenz
Datum der letzten Prüfung
ISBN
ISSN
1360-0532
0266-4763
Sprache
Englisch
Während FHNW Zugehörigkeit erstellt
Ja
Zukunftsfelder FHNW
Publikationsstatus
Veröffentlicht
Begutachtung
Peer-Review der ganzen Publikation
Open Access-Status
Hybrid
Lizenz
'https://creativecommons.org/licenses/by/4.0/'
Zitation
TEMPL, Matthias und Markus ULMER, 2024. The impact of misclassifications and outliers on imputation methods. Journal of Applied Statistics. 2024. Bd. 51, Nr. 14, S. 2894–2928. DOI 10.1080/02664763.2024.2325969. Verfügbar unter: https://doi.org/10.26041/fhnw-10956