Towards 3D bioprinted spinal cord organoids

Lade...
Vorschaubild
Autor:innen
Han, Yilin
King, Marianne
Tikhomirov, Evgenii
Barasa, Povilas
Dos Santos Souza, Cleide
Lindh, Jonas
Baltriukiene, Daiva
Ferraiuolo, Laura
Azzouz, Mimoun
Autor:in (Körperschaft)
Publikationsdatum
21.05.2022
Typ der Arbeit
Studiengang
Typ
01A - Beitrag in wissenschaftlicher Zeitschrift
Herausgeber:innen
Herausgeber:in (Körperschaft)
Betreuer:in
Übergeordnetes Werk
International Journal of Molecular Sciences
Themenheft
DOI der Originalpublikation
Link
Reihe / Serie
Reihennummer
Jahrgang / Band
23
Ausgabe / Nummer
10
Seiten / Dauer
1-13
Patentnummer
Verlag / Herausgebende Institution
MDPI
Verlagsort / Veranstaltungsort
Auflage
Version
Programmiersprache
Abtretungsempfänger:in
Praxispartner:in/Auftraggeber:in
Zusammenfassung
Three-dimensional (3D) cultures, so-called organoids, have emerged as an attractive tool for disease modeling and therapeutic innovations. Here, we aim to determine if boundary cap neural crest stem cells (BC) can survive and differentiate in gelatin-based 3D bioprinted bioink scaffolds in order to establish an enabling technology for the fabrication of spinal cord organoids on a chip. BC previously demonstrated the ability to support survival and differentiation of co-implanted or co-cultured cells and supported motor neuron survival in excitotoxically challenged spinal cord slice cultures. We tested different combinations of bioink and cross-linked material, analyzed the survival of BC on the surface and inside the scaffolds, and then tested if human iPSC-derived neural cells (motor neuron precursors and astrocytes) can be printed with the same protocol, which was developed for BC. We showed that this protocol is applicable for human cells. Neural differentiation was more prominent in the peripheral compared to central parts of the printed construct, presumably because of easier access to differentiation-promoting factors in the medium. These findings show that the gelatin-based and enzymatically cross-linked hydrogel is a suitable bioink for building a multicellular, bioprinted spinal cord organoid, but that further measures are still required to achieve uniform neural differentiation.
Schlagwörter
Cell survival, Cell differentiation, Hydrogel, Bioprinting
Fachgebiet (DDC)
600 - Technik, Medizin, angewandte Wissenschaften
Projekt
Veranstaltung
Startdatum der Ausstellung
Enddatum der Ausstellung
Startdatum der Konferenz
Enddatum der Konferenz
Datum der letzten Prüfung
ISBN
ISSN
1422-0067
1661-6596
Sprache
Englisch
Während FHNW Zugehörigkeit erstellt
Ja
Publikationsstatus
Veröffentlicht
Begutachtung
Peer-Review der ganzen Publikation
Open Access-Status
Gold
Lizenz
'https://creativecommons.org/licenses/by/4.0/'
Zitation
HAN, Yilin, Marianne KING, Evgenii TIKHOMIROV, Povilas BARASA, Cleide DOS SANTOS SOUZA, Jonas LINDH, Daiva BALTRIUKIENE, Laura FERRAIUOLO, Mimoun AZZOUZ, Maurizio GULLO und Elena N. KOZLOVA, 2022. Towards 3D bioprinted spinal cord organoids. International Journal of Molecular Sciences. 21 Mai 2022. Bd. 23, Nr. 10, S. 1–13. DOI 10.3390/ijms23105788. Verfügbar unter: https://doi.org/10.26041/fhnw-4644