Identifizierung von Auffälligkeiten in sicherheitsrelevanten Meldungen
Kein Vorschaubild vorhanden
Autor:innen
Autor:in (Körperschaft)
Publikationsdatum
2023
Typ der Arbeit
Bachelor
Studiengang
Sammlung
Typ
11 - Studentische Arbeit
Herausgeber:innen
Herausgeber:in (Körperschaft)
Betreuer:in
Übergeordnetes Werk
Themenheft
DOI der Originalpublikation
Link
Reihe / Serie
Reihennummer
Jahrgang / Band
Ausgabe / Nummer
Seiten / Dauer
Patentnummer
Verlag / Herausgebende Institution
Hochschule für Wirtschaft FHNW
Verlagsort / Veranstaltungsort
Olten
Auflage
Version
Programmiersprache
Abtretungsempfänger:in
Praxispartner:in/Auftraggeber:in
Zusammenfassung
Unter Verwendung eines Algorithmus der sich auf die Bayes'sche Inferenz stützt, konnten bislang wertvolle Erkenntnisse erlangt und in einem Dashboard visualisiert werden. Dies führt zur Vermeidung von Gefahrensituationen. Eine Optimierung könnte diese Performance jedoch weiter steigern. Im Rahmen dieser Bachelorarbeit wurden drei Schwachstellen identifiziert: Überbewertung grosser Betriebspunkte, Vernachlässigung zeitlicher Aspekte und allgemeine statistische Annahmen. Ziel ist es eine präzisere Datenverarbeitung und verbesserte Entscheidungsfindung zu ermöglichen.
Schlagwörter
Fachgebiet (DDC)
330 - Wirtschaft
Veranstaltung
Startdatum der Ausstellung
Enddatum der Ausstellung
Startdatum der Konferenz
Enddatum der Konferenz
Datum der letzten Prüfung
ISBN
ISSN
Sprache
Deutsch
Während FHNW Zugehörigkeit erstellt
Ja
Zukunftsfelder FHNW
Publikationsstatus
Begutachtung
Open Access-Status
Lizenz
Zitation
SARACINO, Rocco, 2023. Identifizierung von Auffälligkeiten in sicherheitsrelevanten Meldungen. Olten: Hochschule für Wirtschaft FHNW. Verfügbar unter: https://irf.fhnw.ch/handle/11654/42057