Training and re-using human experience: a recommender for more accurate cost estimates in project planning

Kein Vorschaubild vorhanden
Autor:in (Körperschaft)
Publikationsdatum
2018
Typ der Arbeit
Studiengang
Typ
04B - Beitrag Konferenzschrift
Herausgeber:innen
Herausgeber:in (Körperschaft)
Betreuer:in
Übergeordnetes Werk
IC3K 2018 - Proceedings of the 10th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management
Themenheft
DOI der Originalpublikation
Link
Reihe / Serie
Reihennummer
Jahrgang / Band
Ausgabe / Nummer
Seiten / Dauer
52-62
Patentnummer
Verlag / Herausgebende Institution
SciTePress
Verlagsort / Veranstaltungsort
Setúbal
Auflage
Version
Programmiersprache
Abtretungsempfänger:in
Praxispartner:in/Auftraggeber:in
Zusammenfassung
In many industries, companies deliver customised solutions to their (business) customers within projects. Estimating the human effort involved in such projects is a difficult task and underestimating efforts can lead to non-billable hours, i.e. financial loss on the side of the solution provider. Previous work in this area has focused on automatic estimation of the cost of software projects and has largely ignored the interaction between automated estimation support and human project leads. Our main hypothesis is that an adequate design of such interaction will increase the acceptance of automatically derived estimates and that it will allow for a fruitful combination of data-driven insights and human experience. We therefore build a recommender that is applicable beyond software projects and that suggests job positions to be added to projects and estimated effort of such positions. The recommender is based on the analysis of similar cases (case-based reasoning), "explains" derived similarities and allows human intervention to manually adjust the outcomes. Our experiments show that recommendations were considered helpful and that the ability of the system to explain and adjust these recommendations was heavily used and increased the trust in the system. We conjecture that the interaction of project leads with the system will help to further improve the accuracy of recommendations and the support of human learning in the future.
Schlagwörter
Fachgebiet (DDC)
330 - Wirtschaft
Projekt
Veranstaltung
10th International Conference on Knowledge Management and Information Sharing (KMIS)
Startdatum der Ausstellung
Enddatum der Ausstellung
Startdatum der Konferenz
18.09.2018
Enddatum der Konferenz
20.09.2018
Datum der letzten Prüfung
ISBN
978-989-758-330-8
ISSN
Sprache
Englisch
Während FHNW Zugehörigkeit erstellt
Ja
Zukunftsfelder FHNW
Publikationsstatus
Veröffentlicht
Begutachtung
Peer-Review der ganzen Publikation
Open Access-Status
Closed
Lizenz
Zitation
RUDOLF VON ROHR, Christian, Hans Friedrich WITSCHEL und Andreas MARTIN, 2018. Training and re-using human experience: a recommender for more accurate cost estimates in project planning. In: IC3K 2018 - Proceedings of the 10th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management. Setúbal: SciTePress. 2018. S. 52–62. ISBN 978-989-758-330-8. Verfügbar unter: https://irf.fhnw.ch/handle/11654/42357