Human vs. Chatbot. Who is perceived as more trustworthy?
Kein Vorschaubild vorhanden
Autor:innen
Autor:in (Körperschaft)
Publikationsdatum
2019
Typ der Arbeit
Studiengang
Sammlung
Typ
06 - Präsentation
Herausgeber:innen
Herausgeber:in (Körperschaft)
Betreuer:in
Übergeordnetes Werk
Themenheft
DOI der Originalpublikation
Link
Reihe / Serie
Reihennummer
Jahrgang / Band
Ausgabe / Nummer
Seiten / Dauer
Patentnummer
Verlag / Herausgebende Institution
Verlagsort / Veranstaltungsort
Fukuoka
Auflage
Version
Programmiersprache
Abtretungsempfänger:in
Praxispartner:in/Auftraggeber:in
Zusammenfassung
In response to the increasing importance of e-commerce, new communication modes have been developed. For example, chatbot technologies were designed to interact efficiently with customers. As trust can have positive effects on purchasing intentions, trust is the basis of successful business relationships. Trust is also fundamental to the virtual environment and, therefore, users’ trust is a prerequisite of conversational agents, such as chatbots. According to the model of trust, the main judging dimensions in the trust-formation process are warmth and competence. There is still little research on how these trust assessments are made in virtual contact. Moreover, existing research does not provide clear results about the extent of the difference in the interrelationships of sympathy, competence, and trust between human-machine interactions and human-human interactions. Therefore, the present study addresses this gap in research and analysis of trust assessments in human-machine and human-human sales interactions. To test our hypotheses, an experiment was conducted that included a chat-based live sales interaction which the test subjects participated in and evaluated. 98 people took part in the simulation. The results show that the warmth of human-human interaction is perceived as equal to that of human-chatbot interaction. No differences were found in the competence perceptions of the human-chatbot or human-human interactions.
Schlagwörter
Fachgebiet (DDC)
330 - Wirtschaft
005 - Computer Programmierung, Programme und Daten
658 - General Management
005 - Computer Programmierung, Programme und Daten
658 - General Management
Veranstaltung
e-CASE and e-Tech 2019
Startdatum der Ausstellung
Enddatum der Ausstellung
Startdatum der Konferenz
01.04.2019
Enddatum der Konferenz
03.04.2019
Datum der letzten Prüfung
ISBN
ISSN
Sprache
Englisch
Während FHNW Zugehörigkeit erstellt
Nein
Zukunftsfelder FHNW
Publikationsstatus
Begutachtung
Peer-Review des Abstracts
Open Access-Status
Lizenz
Zitation
ROZUMOWSKI, Anna, Rolf RELLSTAB und Michael KLAAS, 2019. Human vs. Chatbot. Who is perceived as more trustworthy? e-CASE and e-Tech 2019. Fukuoka. 2019. Verfügbar unter: https://irf.fhnw.ch/handle/11654/48253