Optimierung der Kundenakquise durch Machine Learning
Lade...
Autor:innen
Autor:in (Körperschaft)
Publikationsdatum
2024
Typ der Arbeit
Bachelor
Studiengang
Sammlung
Typ
11 - Studentische Arbeit
Herausgeber:innen
Herausgeber:in (Körperschaft)
Betreuer:in
Übergeordnetes Werk
Themenheft
DOI der Originalpublikation
Link
Reihe / Serie
Reihennummer
Jahrgang / Band
Ausgabe / Nummer
Seiten / Dauer
Patentnummer
Verlag / Herausgebende Institution
Hochschule für Wirtschaft FHNW
Verlagsort / Veranstaltungsort
Brugg-Windisch
Auflage
Version
Programmiersprache
Abtretungsempfänger:in
Praxispartner:in/Auftraggeber:in
Versicherungsunternehmen
Zusammenfassung
Aktuell erfolgt die Akquise als Kaltakquise, ohne zu berücksichtigen, ob die potenziellen Kundinnen und Kunden basierend ihrer individuellen Merkmalen Interesse an einer Geschäftsbeziehung haben könnten. Ziel der Arbeit ist es, mithilfe von Machine Learning eine optimierte Liste zu erstellen, die Kundinnen und Kunden in zwei Gruppen einteilt: solche mit hohem potenziellem Interesse und solche mit voraussichtlich keinem Interesse.
Schlagwörter
Fachgebiet (DDC)
Veranstaltung
Startdatum der Ausstellung
Enddatum der Ausstellung
Startdatum der Konferenz
Enddatum der Konferenz
Datum der letzten Prüfung
ISBN
ISSN
Sprache
Deutsch
Während FHNW Zugehörigkeit erstellt
Ja
Zukunftsfelder FHNW
Publikationsstatus
Begutachtung
Open Access-Status
Lizenz
Zitation
Balimann, C. (2024). Optimierung der Kundenakquise durch Machine Learning [Hochschule für Wirtschaft FHNW]. https://irf.fhnw.ch/handle/11654/49117