Identification of low flow events by machine learning algorithms
Lade...
Autor:in (Körperschaft)
Publikationsdatum
18.04.2024
Typ der Arbeit
Studiengang
Sammlung
Typ
06 - Präsentation
Herausgeber:innen
Herausgeber:in (Körperschaft)
Betreuer:in
Übergeordnetes Werk
Themenheft
DOI der Originalpublikation
Link
Reihe / Serie
Reihennummer
Jahrgang / Band
Ausgabe / Nummer
Seiten / Dauer
Patentnummer
Verlag / Herausgebende Institution
Verlagsort / Veranstaltungsort
Wien
Auflage
Version
Programmiersprache
Abtretungsempfänger:in
Praxispartner:in/Auftraggeber:in
Zusammenfassung
An improved forecast of low flow events in catchment basins could be a valuable tool for the operation and decision making of dependent infrastructure (e.g. wastewater discharge, water abstraction) along corresponding rivers. Therefore, the classification of 6642 independent low-flow-events (being the Q347 as the discharge less than the 95%- exceedance quantile of the FDC) from 55 catchment basins within the Kanton Solothurn (Switzerland) was performed by five different machine learning algorithms (i.e. knn, decision tree, random forest, support vector machine, logistic regression). Herein, each low flow event was characterized by 47 static and dynamic parameters (i.e. description of catchment and event history), being supplemented by differently defined (near) non-low-flow events, leading up to a total population of approx. 18000 discharge events.
The validation and verification showed different qualities of the classification accuracy for the forecast of low-flow events, being dependent on the selection of the defined event populations, the selected machine learning algorithm and the definition of classes. In general, the support vector machine and random forest may lead, with the presumption of carefully selected classes, to forecast accuracies of >90%.
Schlagwörter
Hydrologie, Niedrigwasser, Low flow, Machine learning
Fachgebiet (DDC)
Veranstaltung
EGU General Assembly 2024
Startdatum der Ausstellung
Enddatum der Ausstellung
Startdatum der Konferenz
14.04.2024
Enddatum der Konferenz
19.04.2024
Datum der letzten Prüfung
ISBN
ISSN
Sprache
Englisch
Während FHNW Zugehörigkeit erstellt
Ja
Zukunftsfelder FHNW
Publikationsstatus
Begutachtung
Keine Begutachtung
Open Access-Status
Lizenz
Zitation
Lebrenz, H., Pavia Santolamazza, D., & Staufer, P. (2024, April 18). Identification of low flow events by machine learning algorithms. EGU General Assembly 2024. https://doi.org/10.5194/egusphere-egu24-4094