Hochschule für Life Sciences FHNW
Dauerhafte URI für den Bereich
Listen
Auflistung Hochschule für Life Sciences FHNW nach Autor:in "Aghlmandi, Soheila"
Gerade angezeigt 1 - 2 von 2
Treffer pro Seite
Sortieroptionen
- PublikationA multi-criteria assessment strategy for 3D printed porous polyetheretherketone (PEEK) patient-specific implants for orbital wall reconstruction(MDPI, 13.08.2021) Sharma, Neha; Welker, Dennis; Aghlmandi, Soheila; Maintz, Michaela; Zeilhofer, Hans-Florian; Honigmann, Philipp; Seifert, Thomas; Thieringer, Florian [in: Journal of Clinical Medicine]Pure orbital blowout fractures occur within the confines of the internal orbital wall. Restoration of orbital form and volume is paramount to prevent functional and esthetic impairment. The anatomical peculiarity of the orbit has encouraged surgeons to develop implants with customized features to restore its architecture. This has resulted in worldwide clinical demand for patient-specific implants (PSIs) designed to fit precisely in the patient’s unique anatomy. Material extrusion or Fused filament fabrication (FFF) three-dimensional (3D) printing technology has enabled the fabrication of implant-grade polymers such as Polyetheretherketone (PEEK), paving the way for a more sophisticated generation of biomaterials. This study evaluates the FFF 3D printed PEEK orbital mesh customized implants with a metric considering the relevant design, biomechanical, and morphological parameters. The performance of the implants is studied as a function of varying thicknesses and porous design constructs through a finite element (FE) based computational model and a decision matrix based statistical approach. The maximum stress values achieved in our results predict the high durability of the implants, and the maximum deformation values were under one-tenth of a millimeter (mm) domain in all the implant profile configurations. The circular patterned implant (0.9 mm) had the best performance score. The study demonstrates that compounding multi-design computational analysis with 3D printing can be beneficial for the optimal restoration of the orbital floor.01A - Beitrag in wissenschaftlicher Zeitschrift
- PublikationQuantitative assessment of point-of-care 3D-printed patient-specific polyetheretherketone (PEEK) cranial implants(MDPI, 07.08.2021) Seiler, Daniel; Dalcanale, Federico; Sharma, Neha; Aghlmandi, Soheila; Zeilhofer, Hans-Florian; Thieringer, Florian; Honigmann, Philipp [in: International Journal of Molecular Sciences]Recent advancements in medical imaging, virtual surgical planning (VSP), and three-dimensional (3D) printing have potentially changed how today’s craniomaxillofacial surgeons use patient information for customized treatments. Over the years, polyetheretherketone (PEEK) has emerged as the biomaterial of choice to reconstruct craniofacial defects. With advancements in additive manufacturing (AM) systems, prospects for the point-of-care (POC) 3D printing of PEEK patient-specific implants (PSIs) have emerged. Consequently, investigating the clinical reliability of POC-manufactured PEEK implants has become a necessary endeavor. Therefore, this paper aims to provide a quantitative assessment of POC-manufactured, 3D-printed PEEK PSIs for cranial reconstruction through characterization of the geometrical, morphological, and biomechanical aspects of the in-hospital 3D-printed PEEK cranial implants. The study results revealed that the printed customized cranial implants had high dimensional accuracy and repeatability, displaying clinically acceptable morphologic similarity concerning fit and contours continuity. From a biomechanical standpoint, it was noticed that the tested implants had variable peak load values with discrete fracture patterns and failed at a mean (SD) peak load of 798.38 ± 211.45 N. In conclusion, the results of this preclinical study are in line with cranial implant expectations; however, specific attributes have scope for further improvements.01A - Beitrag in wissenschaftlicher Zeitschrift