Listen
Publikation An efficient monitoring concept with control charts for on-line sensors(IWA Publishing, 2002) Thomann, Michael; Rieger, Leiv; Frommhold, Sabine; Siegrist, Hansruedi; Gujer, WilliA monitoring concept for on-line sensors will be discussed which helps the WWTP staff to detect drift-, shift- and outlier effects as well as unsatisfactory calibration curves. The approach is based on the analysis of comparative measurements between the sensor and a reference method. It combines statistical analysis such as control charts and regression analysis with decision support rules. The combination of two different detection levels in the selected Shewhart control charts with additional criteria allows one to detect ‘out-of-control’ situations early with an optimized measurement effort. Beside the statistical analysis the concept supports the operator with a graphical analysis to monitor the accuracy of on-line measurements efficiently. The widely applicable monitoring concept will be illustrated with examples for an ion-sensitive NH4+- and a MLSS-sensor.01A - Beitrag in wissenschaftlicher ZeitschriftPublikation Anaerobic digestion of biowaste in Indian municipalities. Effects on energy, fertilizers, water and the local environment(Elsevier, 07/2021) Gross, Thomas; Breitenmoser, Lena; Hugi, Christoph; Wintgens, ThomasAnaerobic digestion (AD) of biowaste seems promising to provide renewable energy (biogas) and organic fertilizers (digestate) and mitigate environmental pollution in India. Intersectoral analyses of biowaste management in municipalities are needed to reveal benefits and trade-offs of AD at the implementation-level. Therefore, we applied material flow analyses (MFAs) to quantify effects of potential AD treatment of biowaste on energy and fertilizer supply, water consumption and environmental pollution in two villages, two towns and two cities in Maharashtra. Results show that in villages AD of available manure and crop residues can cover over half of the energy consumption for cooking (EC) and reduce firewood dependency. In towns and cities, AD of municipal biowaste is more relevant for organic fertilizer supply and pollution control because digestate can provide up to several times the nutrient requirements for crop production, but can harm ecosystems when discharged to the environment. Hence, in addition to energy from municipal biowaste - which can supply 4-6% of EC - digestate valorisation seems vital but requires appropriate post-treatment, quality control and trust building with farmers. To minimize trade-offs, water-saving options should be considered because 2-20% of current groundwater abstraction in municipalities is required to treat all available biowaste with 'wet' AD systems compared to <3% with 'dry' AD systems. We conclude that biowaste management with AD requires contextualized solutions in the setting of energy, fertilizers and water at the implementation-level to conceive valorization strategies for all AD products, reduce environmental pollution and minimize trade-offs with water resources.01A - Beitrag in wissenschaftlicher ZeitschriftPublikation Analyzing microbial communities and their biodegradation of multiple pharmaceuticals in membrane bioreactors(Springer, 12.07.2023) Suleiman, Marcel; Demaria, Francesca; Zimmardi, Cristina; Kolvenbach, Boris; Corvini, PhilippeAbstract Pharmaceuticals are of concern to our planet and health as they can accumulate in the environment. The impact of these biologically active compounds on ecosystems is hard to predict, and information on their biodegradation is necessary to establish sound risk assessment. Microbial communities are promising candidates for the biodegradation of pharmaceuticals such as ibuprofen, but little is known yet about their degradation capacity of multiple micropollutants at higher concentrations (100 mg/L). In this work, microbial communities were cultivated in lab-scale membrane bioreactors (MBRs) exposed to increasing concentrations of a mixture of six micropollutants (ibuprofen, diclofenac, enalapril, caffeine, atenolol, paracetamol). Key players of biodegradation were identified using a combinatorial approach of 16S rRNA sequencing and analytics. Microbial community structure changed with increasing pharmaceutical intake (from 1 to 100 mg/L) and reached a steady-state during incubation for 7 weeks on 100 mg/L. HPLC analysis revealed a fluctuating but significant degradation (30–100%) of five pollutants (caffeine, paracetamol, ibuprofen, atenolol, enalapril) by an established and stable microbial community mainly composed of Achromobacter, Cupriavidus, Pseudomonas and Leucobacter. By using the microbial community from MBR1 as inoculum for further batch culture experiments on single micropollutants (400 mg/L substrate, respectively), different active microbial consortia were obtained for each single micropollutant. Microbial genera potentially responsible for degradation of the respective micropollutant were identified, i.e. Pseudomonas sp. and Sphingobacterium sp. for ibuprofen, caffeine and paracetamol, Sphingomonas sp. for atenolol and Klebsiella sp. for enalapril. Our study demonstrates the feasibility of cultivating stable microbial communities capable of degrading simultaneously a mixture of highly concentrated pharmaceuticals in lab-scale MBRs and the identification of microbial genera potentially responsible for the degradation of specific pollutants. Key points • Multiple pharmaceuticals were removed by stable microbial communities. • Microbial key players of five main pharmaceuticals were identified.01A - Beitrag in wissenschaftlicher ZeitschriftPublikation Assessing microbial water quality. Users' perceptions and system functionality following a combined water safety intervention in rural Nepal(Frontiers, 15.02.2022) Bänziger, Carola; Schertenleib, Ariane; Kunwar, Bal Mukunda; Bhatta, Madan; Marks, SaraRisk-based water safety interventions are one approach to improve drinking water quality and consequently reduce the number of people consuming faecally contaminated water. Despite broad acceptance of water safety planning approaches globally, there is a lack of evidence of their effectiveness for community-managed piped water supplies in rural areas of developing countries. Our research, in the form of a cluster-based controlled pre-post intervention analysis, investigated the impact of a combined water safety intervention on outcomes of microbial water quality, users' perceptions and piped system functionality in rural Nepal. The study enrolled 21 treatment systems and 12 control systems across five districts of the Karnali and Sudurpaschim provinces. Treatment group interventions included field laboratories for microbial analysis, regular monitoring of water quality including sanitary inspections, targeted treatment and infrastructure improvements, household hygiene and water filter promotion, and community training.01A - Beitrag in wissenschaftlicher ZeitschriftPublikation Assessment of water, sanitation, and hygiene services in district health care facilities in rural area of Mekong Delta, Vietnam(Springer, 18.10.2022) Hoang, Thi-Khanh-Dieu; Binh, Quach-An; Bui, Xuan-Thanh; Le, Thi-Hieu; Dang, Bao-Trong; Nguyen, Hong-Hai; Ngo, Thi-Tra-My; Kohler, Petra; Makohliso, Solomzi; Peter, Maryna; Raab, Martin; Vanobberghen, Alexandre; Hayter, Arabella; Schönenberger, KlausAccess to sufficient water, sanitation, and hygiene (WASH) services is a crucial requirement for patients during therapy and general well-being in the hospital. However, in low- and middle-income countries, these services are often inadequate, resulting in increased morbidity and mortality of patients. This study aimed at assessing the current situation of WASH services in six District Health Care Facilities (DHCFs) in rural areas of the Mekong Delta provinces, Vietnam. The results showed that these services were available with inappropriate quality, which did not compromise the stakeholders’ needs. The revealed WASH infrastructures have raised concerns about the prolonged hospital stays for patients and push nosocomial infections to a high level. The safety of the water supply was doubted as the high E. coli (> 60%) and total coliform incidence (86%) was observed with very low residual chlorine concentration (< 0.1 mg/L) in water quality assessment. Moreover, water supply contained a high concentration of iron (up to 15.55 mg/L) in groundwater in one DHCF. Technical assessment tool analysis proved that the improper management and lack of knowledge by human resources were the primary roots of the observed status WASH services. Improvement of the perceptions of WASH should be done for the hospital staff with collaboration and support from the government to prevent incidents in the future.01A - Beitrag in wissenschaftlicher ZeitschriftPublikation Au@CoS-BiVO4 {010} constructed for visible-light-assisted peroxymonosulfate activation(MDPI, 22.11.2021) Ji, Yekun; Zhou, Ye; Wang, Jinnan; Li, Aimin; Bian, Weilin; Corvini, PhilippeA visible-light-Fenton-like reaction system was constructed for the selective conversion of peroxymonosulfate to sulfate radical. Au@CoS, when doped on monoclinic BiVO4 {010} facets, promoted spatial charge separation due to the different energy band between the m-BiVO4 {010} and {110} facets. The visible-light response of m-BiVO4 was enhanced, which was attributed to the SPR effect of Au. And the photogenerated electrons were transferred from the m-BiVO4 {010} facet to Au via a Schottky junction. Owing to higher work function, CoS was able to capture these photoelectrons with acceleration of the Co(Ⅱ)/Co(Ⅲ) redox, enhancing peroxymonosulfate conversion to sulfate radical (Co2+ + HSO5−→ Co3+ + •SO4− + OH−). On the other hand, holes accumulated on m-BiVO4 {110} facets also contributed to organics oxidation. Thus, more than 95% of RhB was degraded within 40 min, and, even after five cycles, over 80% of RhB could be removed. The radical trapping experiments and EPR confirmed that both the sulfate radical and photogenerated hole were the main species for organics degradation. UV-vis DRS, photoluminescence (PL) and photoelectrochemical analyses also confirmed the enhancement of the visible-light response and charge separation. In a pilot scale experiment (PMS = 3 mM, initial TOC = 151 mg/L, reaction time = 4 h), CoS-Au-BiVO4 loaded on glass fiber showed a high mineralization rate (>60%) of practical wastewater.01A - Beitrag in wissenschaftlicher ZeitschriftPublikation Circularity and environmental sustainability of organic and printed electronics(Jenny Stanford Publishing, 2024) Le Blévennec, Kévin; Hengevoss, Dirk; Zimmermann, Yannick-Serge; Brun, Nadja; Hugi, Christoph; Lenz, Markus; Corvini, Philippe; Fent, Karl; Nisato, Giovanni; Lupo, Donald; Rudolf, SimoneIn this chapter, the possible role and impact of organic and printed electronics (OPE) in a transition toward a circular economy and more sustainable society will be discussed. The learning targets are twofold: first, understanding main environmental issues associated with the emerging field of OPE, and second, identifying, through a systemic perspective, the enabling potential of these technologies.04A - Beitrag SammelbandPublikation Computer-aided monitoring and operation of continuous measuring devices(IWA Publishing, 2004) Rieger, Leiv; Thomann, Michael; Joss, Adriano; Gujer, Willi; Siegrist, HansruediExtended studies of measuring and control systems in activated sludge plants at EAWAG revealed that the measuring devices remain the weakest point in control applications. To overcome this problem, a software package was developed which analyses and evaluates the residuals between a reference measurement and the sensor and collects the information in a database. The underlying monitoring concept is based on a two-step evaluation of the residuals by means of statistical evaluations using control charts with two different sets of criteria. The first step is a warning phase in which hints on probable errors trigger an increase in the monitoring frequency. In the second step, the alarm phase, the error hypothesis has to be validated and should allow immediate and targeted reactions from the operator. This procedure enables an optimized and flexible monitoring effort combined with an increased probability of early detection of systematic measuring errors. Beside the monitoring concept, information about the measuring device, the performed servicing actions and the responsibilities is stored. Statistical values for the quantitative characterization of the measuring system during operation will be given. They are needed to parameterise controllers or to guarantee the accuracy of the instrument in order to allow reliable calculations of effluent tax. In contrast to other concepts, not only is the measuring device examined under standard conditions, but so is the entire measuring chain from the liquid to be analysed to the value stored in the database of the supervisory system. The knowledge of the response time of the measuring system is then required in order to allow a comparison of the corresponding values.01A - Beitrag in wissenschaftlicher ZeitschriftPublikation Different effects of pesticides on transcripts of the endocrine regulation and energy metabolism in honeybee foragers from different colonies(Nature, 2023) Christen, VerenaHoneybees are important pollinators of many crops and contribute to biological biodiversity. For years, a decline in bee populations has been observed in certain areas. This decline in honeybees is accompanied by a decrease in pollinator services. One factor contributing to the decline of bee colonies is the exposure to pesticides. Pesticide exposure of bees, among other effects, can negatively affect orientation, memory, immune system function and gene expression. Among the altered expressed genes are transcripts of endocrine regulation and oxidative phosphorylation. Endocrine regulation plays an important role in the development of nurse bees into foragers and oxidative phosphorylation is involved in energy metabolism. Most of these transcriptional changes were investigated using mixed aged honeybees derived from the same colony. Experiments using nurse bees or foragers of the same age but from different colonies are rare. In the present study, effects of the two pesticides chlorpyrifos and pyraclostrobin on the expression of transcripts linked to endocrine regulation and oxidative phosphorylation in foragers of the same age from three different colonies are investigated to fill this gap. These two pesticides were selected because negative effects at sublethal concentrations on bees are known and because they are found in pollen and nectar of crops and wild plants. For this purpose, 20–22 days old foragers of three different colonies were exposed to different sublethal concentrations of the selected fungicides for 24 h, followed by analysis of the expression of. Some significant changes in gene expression of both endocrine regulation transcripts and oxidative phosphorylation were shown. Furthermore, it became clear that forager bees from different colonies react differently. This is especially important in relation to the risk analysis of pesticides. In addition, it could be shown that the expression of the brain of bees is a robust marker to distinguish nurse bees from foragers at the molecular biological level. In summary, this study clearly shows that pesticides, which are often detected in pollen and nectar, display negative effects at sublethal concentrations on bees and that it is important to use bees from different colonies for risk assessment of pesticides.01A - Beitrag in wissenschaftlicher ZeitschriftPublikation Direct ammonium oxidation to nitrogen gas (Dirammox) in Alcaligenes strain HO-1: the electrode role(Elsevier, 07/2023) Pous, Narcís; Bañeras, Lluis; Corvini, Philippe; Liu, Shuang-Jiang; Puig, Sebastià01A - Beitrag in wissenschaftlicher ZeitschriftPublikation Environmental selenium volatilization is possibly conferred by promiscuous reactions of the sulfur metabolism(Elsevier, 2023) Liu, Ying; Schäffer, Andreas; Martinez, Mathieu; Lenz, MarkusSelenium deficiency affects many million people worldwide and volatilization of biogenically methylated selenium species to the atmosphere may limit Se entering the food chain. However, there is very little systematic data on volatilization at nanomolar concentrations prevalent in pristine natural environments. Pseudomonas tolaasii cultures efficiently methylated Se at these concentrations. Nearly perfect linear correlations between the spiked Se concentrations and Dimethylselenide, Dimethyldiselenide, Dimethylselenylsulfide and 2-hydroxy-3-(methylselanyl)propanoic acid were observed up to 80 nM. The efficiency of methylation increased linearly with increasing initial Se concentration, arguing that the enzymes involved are not constitutive, but methylation proceeds promiscuously via pathways of S methylation. From the ratio of all methylated Se and S species, one can conclude that between 0.30% and 3.48% of atoms were Se promiscuously methylated at such low concentrations. At concentrations higher than 640 nM (∼50 μg/L) a steep increase in methylation and volatilization was observed, which suggested the induction of specific enzymes. Promiscuous methylation at low environmental concentrations calls into question that view that methylated Se in the atmosphere is a result of a purposeful Se metabolism serving detoxification. Rather, the concentrations of methylated Se in the atmosphere may be “coincidental” i.e., determined by the activity of S cycling microorganisms. Further, a steep increase in methylation efficiency when surpassing a certain threshold concentration (here ∼50 μg/L) calls into question that natural methylation can be estimated from high Se spikes in laboratory systems, yet highlights the possibility of using bacterial methylation as an effective remediation strategy for media higher concentrated in Se. © 2023 The Authors01A - Beitrag in wissenschaftlicher ZeitschriftPublikation Enzymes for consumer products to achieve climate neutrality(Oxford University Press, 15.03.2023) Molina-Espeja, Patricia; Sanz-Aparicio, Julia; Golyshin, Peter N.; Robles-Martín, Ana; Guallar, Víctor; Beltrametti, Fabrizio; Müller, Markus; Yakimov, Michail M.; Modregger, Jan; van Logchem, Moniec; Corvini, Philippe; Shahgaldian, Patrick; Degering, Christian; Wieland, Susanne; Timm, Anne; de Carvalho, Carla C. C. R.; Re, Ilaria; Daniotti, Sara; Thies, Stephan; Jaeger, Karl-Erich; Chow, Jennifer; Streit, Wolfgang R.; Lottenbach, Roland; Rösch, Rainer; Ansari, Nazanin; Ferrer, ManuelAbstract Today, the chemosphere’s and biosphere’s compositions of the planet are changing faster than experienced during the past thousand years. CO2 emissions from fossil fuel combustion are rising dramatically, including those from processing, manufacturing and consuming everyday products; this rate of greenhouse gas emission (36.2 gigatons accumulated in 2022) is raising global temperatures and destabilizing the climate, which is one of the most influential forces on our planet. As our world warms up, our climate will enter a period of constant turbulence, affecting more than 85% of our ecosystems, including the delicate web of life on these systems, and impacting socioeconomic networks. How do we deal with the green transition to minimize climate change and its impacts while we are facing these new realities? One of the solutions is to use renewable natural resources. Indeed, nature itself, through the working parts of its living systems, the enzymes, can significantly contribute to achieve climate neutrality and good ecological/biodiversity status. Annually they can help decreasing CO2 emissions by 1–2.5 billion-tons, carbon demand by about 200 million-tons, and chemical demand by about 90 million-tons. With current climate change goals, we review the consequences of climate change at multiple scales and how enzymes can counteract or mitigate them. We then focus on how they mobilize sustainable and greener innovations in consumer products that have a high contribution to global carbon emissions. Finally, key innovations and challenges to be solved at the enzyme and product levels are discussed.01A - Beitrag in wissenschaftlicher ZeitschriftPublikation Enzymes for consumer products to achieve climate neutrality(Oxford University Press, 15.03.2023) Molina-Espeja, Patricia; Sanz-Aparicio, Julia; Golyshin, Peter N.; Robles-Martín, Ana; Guallar, Víctor; Beltrametti, Fabrizio; Müller, Markus; Yakimov, Michail M.; Modregger, Jan; van Logchem, Moniec; Corvini, Philippe; Shahgaldian, Patrick; Degering, Christian; Wieland, Susanne; Timm, Anne; de Carvalho, Carla C. C. R.; Re, Ilaria; Daniotti, Sara; Thies, Stephan; Jaeger, Karl-Erich; Chow, Jennifer; Streit, Wolfgang R.; Lottenbach, Roland; Rösch, Rainer; Ansari, Nazanin; Ferrer, ManuelToday, the chemosphere’s and biosphere’s compositions of the planet are changing faster than experienced during the past thousand years. CO2 emissions from fossil fuel combustion are rising dramatically, including those from processing, manufacturing and consuming everyday products; this rate of greenhouse gas emission (36.2 gigatons accumulated in 2022) is raising global temperatures and destabilizing the climate, which is one of the most influential forces on our planet. As our world warms up, our climate will enter a period of constant turbulence, affecting more than 85% of our ecosystems, including the delicate web of life on these systems, and impacting socioeconomic networks. How do we deal with the green transition to minimize climate change and its impacts while we are facing these new realities? One of the solutions is to use renewable natural resources. Indeed, nature itself, through the working parts of its living systems, the enzymes, can significantly contribute to achieve climate neutrality and good ecological/biodiversity status. Annually they can help decreasing CO2 emissions by 1–2.5 billion-tons, carbon demand by about 200 million-tons, and chemical demand by about 90 million-tons. With current climate change goals, we review the consequences of climate change at multiple scales and how enzymes can counteract or mitigate them. We then focus on how they mobilize sustainable and greener innovations in consumer products that have a high contribution to global carbon emissions. Finally, key innovations and challenges to be solved at the enzyme and product levels are discussed.01A - Beitrag in wissenschaftlicher ZeitschriftPublikation Guidelines on pre- and co-processing of waste in cement production. Use of waste as alternative fuel and raw material(Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH, 2020) Hinkel, Michael; Blume, Steffen; Hinchliffe, Daniel; Mutz, Dieter; Hengevoss, DirkThe main objective of these Guidelines is to improve waste management by offering updated and objective information about pre- and co-processing of waste in the cement industry. They contain knowhow and practical experiences gained in implementing pre- and co-processing since the first edition that served as a reference document in international agreements (e.g. Basel Convention for Hazardous Waste Treatment) and adaptation of various national guidelines. The Guidelines follow common understanding that avoiding and reducing waste is the best way of dealing with current waste problems all over the world. The extension of waste collection to 100% of the population and of waste fractions is notably a prerequisite to manage waste effectively in many countries. However, the Guidelines promote an approach that aims to reduce existing waste problems and at the same time to encourage the use of waste as an alternative source for primary energy and virgin raw materials in cement production. Wherever possible, the concepts of resource efficiency, circular economy, recycling and reuse must be given first priority. Improving waste management will take time. Reaching the status of an effective waste management solution in Europe has taken place over a period of 20-30 years. It has been supported by stringent legislation to monitor quality and emissions. Developing pre- and co-processing as a suitable waste management option requires also time and investments. Rigorous permitting and quality assurance procedures need to be applied. Pre- and coprocessing respects the waste hierarchy and does not contradict it, when these Guidelines are followed. In this context, it can be classified as a technology for energy recovery and mineral recycling. The key for implementation of these Guidelines and to achieve the maximum benefit from pre- and co-processing of waste in cement production continues to be close collaboration and co-operation between the public and the private sectors. Innovative techniques and technical knowhow are available and will be further developed by the private ector, whereas the public sector should ensure that environmental standards are maintained and health and safety regulations are applied and enforced. In addition ethical business conduct, good governance and social responsibility remain prerequisites for successfully implementing the Guidelines.05 - Forschungs- oder ArbeitsberichtPublikation KVI-Konformität in der Nachhaltigkeitsberichterstattung der IWB. Analyse und Ergänzungen(Hochschule für Life Sciences FHNW, 2024) Heuberger, Noomi; Hengevoss, Dirk; Industrielle Werke Basel (IWB)11 - Studentische ArbeitPublikation Life cycle assessment of a novel production route for scandium recovery from bauxite residues(Elsevier, 2024) Hengevoss, Dirk; Misev, Victor; Feigl, Viktória; Fekete-Kertész, Ildikó; Molnár, Mónika; Balomenos, Efthymios; Davris, Panagiotis; Hugi, Christoph; Lenz, MarkusScandium (Sc) has various technological applications, but the concentrations of Sc in ores are low. Both, the mining of low concentrated Sc and the production of industrial-grade Sc are a heavy burden on the environment. Bauxite residue (BR) from alumina production represents one of the major sources of Sc in Europe (Ochsenkühn-Petropulu et al., 1994). The goal of this study is to assess the environmental impacts from cradle to gate of a novel production route developed in the Scandium Aluminium Europe project (SCALE) to extract Sc at concentrations <100 ppm from BR, to concentrate and upgrade it to pure ScF3 and Sc2O3 and ultimately to refine it to an aluminium scandium master alloy with 2 % Sc mass fraction (AlSc2 %). Results show that the global warming potential (GWP), measured in CO2-eq per kg Sc2O3, generated with the novel route is about half the GWP of the state-of-the-art Sc2O3 production from rare earth tailings when applying equal allocation principles. The initial process step to dissolve BR and extract Sc consumes elevated amounts of acid and energy and is responsible for at least 80 % of the route’s total environmental impact. The amount of the generated filter cake (FC) is equal to the amount of the BR input and is a potential resource for cement clinker production. The ecotoxicological study indicates that both FC and BR are slightly ecotoxic.01A - Beitrag in wissenschaftlicher ZeitschriftPublikation Machbarkeitsstudie zur Wiederverwertung von Kupfer und Plastik aus Kabelresten(Hochschule für Life Sciences FHNW, 2024) Dahinden, Jonas; Lenz, Markus; Recycling Huber11 - Studentische ArbeitPublikation Microbial communities and processes in biofilters for post-treatment of ozonated wastewater treatment plant effluent(Elsevier, 15.01.2023) Sauter, Daniel; Steuer, Andrea; Wasmund, Kenneth; Hausmann, Bela; Szewzyk, Ulrich; Sperlich, Alexander; Gnirss, Regina; Cooper, Myriel; Wintgens, Thomas01A - Beitrag in wissenschaftlicher ZeitschriftPublikation 01B - Beitrag in Magazin oder ZeitungPublikation Occupational health risk assessment for wastewater treatment and reuse in Kanpur, India(MDPI, 07.06.2023) Babalola, Folake Monsurat; Breitenmoser, Lena; Furlong, Claire; Campling, Paul; Hooijmans, Christine MariaThe treatment and reuse of wastewater for irrigation can lead to occupational health risks for sewage treatment plant (STP) workers and farmers. Sanitation Safety Planning (SSP) is an approach which can be used to measure and mitigate these risks. This paper explores what impact a novel secondary treatment process, consisting of an integrated permeate channel (IPC) membrane combined with a constructed wetland plus, has on the occupational health risks compared with the existing activated sludge wastewater treatment process and reuse system in Kanpur, Uttar Pradesh. A mixed methodology was used, which included key informant interviews, structured observations, and E. coli analysis. This data was used to undertake semi-quantitative risk assessments following the SSP approach. The novel secondary treatment increased the number of health risks which the STP workers were exposed to, but the severity of the risks was lower. This was due to the differences in treatment processes and infrastructures. The number of health risks for the farmers decreased both in number and severity. For their children, the severity of the health impacts decreased. These changes were due to the increase in the microbiological quality of the irrigation water. This study highlights the potential of using a semi-quantitative risk assessment to assess the occupational health impacts of using novel treatment technologies.01A - Beitrag in wissenschaftlicher Zeitschrift