Listen
2 Ergebnisse
Ergebnisse nach Hochschule und Institut
Publikation Engineering efficient hole transport layer Ferrihydrite-MXene on BiVO4 photoanodes for photoelectrochemical water splitting: Work function and conductivity regulated(Elsevier, 2022) Bai, Weihao; Zhou, Ye; Peng, Gang; Wang, Jinnan; Li, Aimin; Corvini, PhilippeAlthough great interest is focused on development of semiconductor photoanodes for efficient photoelectrochemical (PEC) water splitting, the pressing bottleneck to address the intrinsic charge transport for enhancement of PEC performance still remains to be resolved. Herein, hole transport layer (Fh-MXene) constructed by doping of MXene (Ti3C2) in Ferrihydrite (Fh) is loaded on BiVO4 photoanode. This novel BiVO4@Fh-MXene photoanode achieves high current density of 4.55 mA cm−2 at 1.23 V versus reversible hydrogen electrode (vs. RHE), exhibiting excellent photostability. From electrochemical analysis and density functional theory calculations, high PEC performance is ascribed to incorporation of Fh-MXene as hole transport layer, enhancing conductivity and water oxidation reaction. Notably, MXene can improve band alignment of BiVO4/Fh-MXene interface by tuning work function, which strengthens the built-in electric field for more efficient hole extraction. This work provides a simple method to design photoanodes with efficient charge transport layers for feasible PEC water splitting application.01A - Beitrag in wissenschaftlicher ZeitschriftPublikation Assessing the biodegradation of btex and stress response in a bio-permeable reactive barrier using compound-specific isotope analysis(MDPI, 20.07.2022) Chen, Tianyu; Wu, Yan; Wang, Jinnan; Corvini, PhilippeBy using compound-specific isotope analysis (CSIA) in combination with high-throughput sequencing analysis (HTS), we successfully evaluated the benzene and toluene biodegradation in a bio-permeable reactive barrier (bio-PRB) and the stress response of the microbial community. Under stress conditions, a greater decline in the biodegradation rate of BTEX was observed compared with the apparent removal rate. Both an increase in the influent concentration and the addition of trichloroethylene (TCE) inhibited benzene biodegradation, while toluene biodegradation was inhibited by TCE. Regarding the stress response, the relative abundance of the dominant bacterial community responsible for the biodegradation of BTEX increased with the influent concentration. However, the dominant bacterial community did not change, and its relative abundance was restored after the influent concentration decreased. On the contrary, the addition of TCE significantly changed the bacterial community, with Aminicenantes becoming the dominant phyla for co-metabolizing TCE and BTEX. Thus, TCE had a more significant influence on the bio-PRB than an increasing influent concentration, although these two stress conditions showed a similar degree of influence on the apparent removal rate of benzene and toluene. The present work not only provides a new method for accurately evaluating the biodegradation performance and microbial community in a bio-PRB, but also expands the application of compound-specific isotope analysis in the biological treatment of wastewater.01A - Beitrag in wissenschaftlicher Zeitschrift