Institut für Ecopreneurship

Dauerhafte URI für die Sammlunghttps://irf.fhnw.ch/handle/11654/26

Listen

Ergebnisse nach Hochschule und Institut

Gerade angezeigt 1 - 10 von 124
  • Publikation
    Organic photovoltaics: Potential fate and effects in the environment
    (Elsevier, 2012) Zimmermann, Yannick-Serge; Schäffer, Andreas; Hugi, Christoph; Fent, Karl; Corvini, Philippe; Lenz, Markus
    In times of dwindling fossil fuels it is particularly crucial to develop novel “green” technologies in order to cover the increasing worldwide demand for energy. Organic photovoltaic solar cells (OPVs) are promising as a renewable energy source due to low energy requirement for production, low resource extraction, and no emission of greenhouse gasses during use. In contrast to silicium-based solar cells, OPVs offer the advantages of light-weight, semi-transparency and mechanical flexibility. As to a possible forthcoming large-scale production, the environmental impact of such OPVs should be assessed and compared to currently best available technologies. For the first time, this review compiles the existing knowledge and identifies gaps regarding the environmental impact of such OPVs in a systematic manner. In this regard, we discuss the components of a typical OPV layer by layer. We discuss the probability of enhanced release of OPV-borne components into the environment during use-phase (e.g. UV- and biodegradation) and end-of-life phase (e.g. incineration and waste disposal). For this purpose, we compiled available data on bioavailability, bioaccumulation, biodegradation, and ecotoxicity. Whereas considerable research has already been carried out concerning the ecotoxicity of certain OPV components (e.g. nanoparticles and fullerenes), others have not been investigated at all so far. In conclusion, there is a general lack of information about fate, behavior as well as potential ecotoxicity of most of the main OPV components and their degradation/transformation products. So far, there is no evidence for a worrying threat coming from OPVs, but since at present, no policy and procedures regarding recycling of OPVs are in action, in particular improper disposal upon end-of-life might result in an adverse effect of OPVs in the environment when applied in large-scale.
    01A - Beitrag in wissenschaftlicher Zeitschrift
  • Vorschaubild
    Publikation
    Opciones para el aprovechamiento energético de residuos en la gestión de residuos sólidos urbanos. Guía para los responsables de la toma de decisiones en países en vías de desarrollo y emergentes
    (Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH, 2017) Mutz, Dieter; Hengevoss, Dirk; Hugi, Christoph; Gross, Thomas
    05 - Forschungs- oder Arbeitsbericht
  • Vorschaubild
    Publikation
    Surface water treatment by UV/H2O2 with subsequent soil aquifer treatment. Impact on micropollutants, dissolved organic matter and biological activity
    (Royal Society of Chemistry, 2019) Wünsch, Robin; Plattner, Julia; Cayon, David; Eugster, Fabienne; Gebhardt, Jens; Wülser, Richard; von Gunten, Urs; Wintgens, Thomas
    Because organic micropollutants (MP) are frequently detected in river waters that are used as drinking water sources, combining a relatively cost-efficient natural treatment with upstream advanced oxidation processes (AOP) appears promising for their efficient abatement. Such a multi-barrier system can be integrated in drinking water production schemes to minimize risks from potentially hazardous MPs. This study investigates the impact of an UV/H2O2 AOP before soil aquifer treatment (SAT) on the abatement of selected MPs (EDTA, acesulfame, iopamidol, iomeprol, metformin, 1H-benzotriazole, iopromide), dissolved organic matter (DOM) (apparent molecular size distribution, specific UV absorbance at 254 nm – SUVA) and microbial parameters (intact cell count, cell-bound ATP). A pilot plant consisting of an AOP (0.5 m3 h−1, 4 mg L−1 H2O2, 6000 J m−2) and two parallel soil columns (filtration velocity: 1 m d−1, column height: 1 m) was continuously operated over a period of 15 months with Rhine river water pre-treated with rapid sand filtration. The investigations revealed a shift towards longer retention times of the humic substances peak in LC analysis of DOM, lower SUVA and higher biodegradability of DOM after UV/H2O2 treatment. In addition, an overall higher abatement of all investigated MPs by the combined treatment was observed (AOP with subsequent SAT) compared to either process alone. This observation could be explained by an addition of the single treatment effects. The strong primary disinfection effect of the AOP was detectable along the first meter of infiltration, but did not lead to any change in the column performance (i.e., similar abatement of dissolved organic matter).
    01A - Beitrag in wissenschaftlicher Zeitschrift
  • Publikation
    Methodological approaches for fractionation and speciation to estimate trace element bioavailability in engineered anaerobic digestion ecosystems: An overview
    (Taylor & Francis, 16.09.2016) van Hullebusch, Eric D.; Guibaud, Gilles; Simon, Stéphane; Lenz, Markus; Yekta, Sepehr Shakeri; Fermoso, Fernando G.; Jain, Rohan; Duester, Lars; Roussel, Jimmy; Guillon, Emmanuel; Skyllberg, Ulf; Almeida, C. Marisa R.; Pechaud, Yoan; Garuti, Mirco; Frunzo, Luigi; Esposito, Giovanni; Carliell-Marquet, Cynthia; Ortner, Markus; Collins, Gavin
    01A - Beitrag in wissenschaftlicher Zeitschrift
  • Publikation
    01A - Beitrag in wissenschaftlicher Zeitschrift
  • Publikation
    01A - Beitrag in wissenschaftlicher Zeitschrift
  • Publikation
    Physiological and Transcriptional Effects of Mixtures of Environmental Estrogens, Androgens, Progestins, and Glucocorticoids in Zebrafish
    (American Chemical Society, 12.12.2019) Willi, Raphael; Furia, Nathan; Fent, Karl; Faltermann, Susanne; Mastroianni, Sarah
    01A - Beitrag in wissenschaftlicher Zeitschrift
  • Publikation
    Renewable Energy from Finite Resources: Example of Emerging Photovoltaics
    (Schweizerische Chemische Gesellschaft, 01.11.2019) Schmidt, Felix; Lenz, Markus
    Renewable energies, such as sunlight, wind and geothermal heat, are resources that are replaced rapidly by natural processes. However, wind, hydro and solar installations strictly require raw materials that are, in fact, not renewable. Many raw materials are already facing a supply shortage which cannot be easily overcome. This work reviews the problem of critical raw material (CRM) use in photovoltaics (PV) as an example and explains why supply cannot be easily increased to meet demand. We discuss whether there is indeed a 'struggle for elements' in a Darwinian sense, which ultimately leads to a 'survival of the fittest' race in renewable energy technology. In the case of PV, the perception of the definition of 'fittest' needs to change from that considering energy conversion efficiency alone to that which holistically considers net energy produced per emission under the premise that sufficient environmentally and socially acceptable raw material supply exists for renewable energies and all other sectors.
    01A - Beitrag in wissenschaftlicher Zeitschrift
  • Publikation
    Environmental glucocorticoids corticosterone, betamethasone and flumethasone induce more potent physiological than transcriptional effects in zebrafish embryos
    (Elsevier, 01.07.2019) Willi, Raffael Alois; Faltermann, Susanne; Hettich, Timm; Fent, Karl
    Many glucocorticoids occur in the aquatic environments but their adverse effects to fish are poorly known. Here we investigate effects of the natural glucocorticoid corticosterone and the synthetic glucocorticoids betamethasone and flumethasone in zebrafish embryos. Besides studying the effects of each steroid, we compared effects of natural with synthetic glucocorticoids, used as drugs. Exposure at concentrations of 1 μg/L and higher led to concentration-related decrease in spontaneous muscle contractions at 24 h post fertilization (hpf) and increase in heart rate at 48 hpf. Betamethasone showed a significant increase at 0.11 μg/L in heart rate. Corticosterone also accelerated hatching at 60 hpf at 0.085 μg/L. Transcription of up to 24 genes associated with different pathways showed alterations at 96 and 120 hpf for all glucocorticoids, although with low potency. Corticosterone caused transcriptional induction of interleukin-17, while betamethasone caused transcriptional down-regulation of the androgen receptor, aromatase and hsd11b2, indicating an effect on the sex hormone system. Furthermore, transcripts encoding proteins related to immune system regulation (irg1l, gilz) and fkbp5 were differentially expressed by corticosterone and betamethasone, while flumethasone caused only little effects, mainly alteration of the irg1l transcript. Our study shows that these glucocorticoids caused more potent physiological effects in early embryos than transcriptional alterations in hatched embryos, likely due to increased metabolism in later developmental stages. Thus, these glucocorticoids may be of concern for early stages of fish embryos in contaminated aquatic environments.
    01A - Beitrag in wissenschaftlicher Zeitschrift