Institut für Wirtschaftsinformatik
Dauerhafte URI für die Sammlunghttps://irf.fhnw.ch/handle/11654/66
Listen
18 Ergebnisse
Ergebnisse nach Hochschule und Institut
Publikation A flexible, extendable and adaptable model to support AI coaching(Springer, 2023) Duhan, Ritu; Pande, Charuta; Martin, Andreas; Hinkelmann, Knut; López-Pellicer, Francisco J.; Polini, AndreaWe present a model based on coaching definitions, concepts, and theories to support AI coaching. The model represents the evidence-based coaching practice in different coaching domains by identifying the common elements in the coaching process. We then map the elements of the coaching model with Conversational AI design and development strategies to highlight how an AI coach can be instantiated from the model. We showcase the instantiation through an example use case of an HIV coaching chatbot.04B - Beitrag KonferenzschriftPublikation Proceedings of the AAAI 2019 Spring Symposium on Combining Machine Learning with Knowledge Engineering (AAAI-MAKE 2019)(CEUR Workshop Proceedings, 2019) Martin, Andreas; Hinkelmann, Knut; Gerber, Aurona; Lenat, Doug; Harmelen, Frank van; Clark, Peter03 - SammelbandPublikation ChEdventure - A chatbot-based educational adventure game for modeling tasks in information systems(2021) Pande, Charuta; Witschel, Hans Friedrich; Martin, AndreasPractitioners in business information systems are frequently faced with tasks that involve interpretation and representation of organizational information as models, e.g. business processes, the involved participants, and data. Usually, this information comes from varied sources like stakeholders and documents, often resulting in subjective, biased, or incomplete information. Simulating a realistic organizational environment is important for the education of future business process experts, but challenging to achieve in the educational setting. In this work, we propose a chatbot-based educational adventure game that can introduce complex and often contradictory sources of information in a fun learning approach and help the students in abstracting and interpreting this information, constructing models as an outcome. We elaborate on the first design ideas and requirements.06 - PräsentationPublikation ArchiMEO: A standardized enterprise ontology based on the ArchiMate conceptual model(2020) Hinkelmann, Knut; Laurenzi, Emanuele; Martin, Andreas; Montecchiari, Devid; Spahic, Maja; Thönssen, Barbara; Hammoudi, Slimane; Ferreira Pires, Luis; Selić, BranMany enterprises face the increasing challenge of sharing and exchanging data from multiple heterogeneous sources. Enterprise Ontologies can be used to effectively address such challenge. In this paper, we present an Enterprise Ontology called ArchiMEO, which is based on an ontological representation of the ArchiMate standard for modeling Enterprise Architectures. ArchiMEO has been extended to cover various application domains such as supply risk management, experience management, workplace learning and business process as a service. Such extensions have successfully proven that our Enterprise Ontology is beneficial for enterprise applications integration purposes.04B - Beitrag KonferenzschriftPublikation Random walks on human knowledge: incorporating human knowledge into data-driven recommenders(2018) Witschel, Hans Friedrich; Martin, Andreas; Bernardino, Jorge; Salgado, Ana; Filipe, JoaquimWe explore the use of recommender systems in business scenarios such as consultancy. In these situations, apart from personal preferences of users, knowledge about objective business-driven criteria plays a role. We investigate strategies for representing and incorporating such knowledge into data-driven recommenders. As a baseline, we choose a robust and flexible paradigm that is based on a simple graph-based representation of past customer cases and choices, in combination with biased random walks. On a real data set from a business intelligence consultancy firm, we study how the incorporation of two important types of explicit human knowledge – namely taxonomic and associative knowledge – impacts the effectiveness of a data-driven recommender. Our results show no consistent improvement for taxonomic knowledge, but quite substantial and significant gains when using associative knowledge.04B - Beitrag KonferenzschriftPublikation Training and re-using human experience: a recommender for more accurate cost estimates in project planning(SciTePress, 2018) Rudolf von Rohr, Christian; Witschel, Hans Friedrich; Martin, AndreasIn many industries, companies deliver customised solutions to their (business) customers within projects. Estimating the human effort involved in such projects is a difficult task and underestimating efforts can lead to non-billable hours, i.e. financial loss on the side of the solution provider. Previous work in this area has focused on automatic estimation of the cost of software projects and has largely ignored the interaction between automated estimation support and human project leads. Our main hypothesis is that an adequate design of such interaction will increase the acceptance of automatically derived estimates and that it will allow for a fruitful combination of data-driven insights and human experience. We therefore build a recommender that is applicable beyond software projects and that suggests job positions to be added to projects and estimated effort of such positions. The recommender is based on the analysis of similar cases (case-based reasoning), "explains" derived similarities and allows human intervention to manually adjust the outcomes. Our experiments show that recommendations were considered helpful and that the ability of the system to explain and adjust these recommendations was heavily used and increased the trust in the system. We conjecture that the interaction of project leads with the system will help to further improve the accuracy of recommendations and the support of human learning in the future.04B - Beitrag KonferenzschriftPublikation Visualization of patterns for hybrid learning and reasoning with human involvement(Springer, 2020) Witschel, Hans Friedrich; Pande, Charuta; Martin, Andreas; Laurenzi, Emanuele; Hinkelmann, Knut; Dornberger, Rolf04A - Beitrag SammelbandPublikation Ontology-based metamodeling(Springer, 2018) Hinkelmann, Knut; Laurenzi, Emanuele; Martin, Andreas; Thönssen, Barbara; Dornberger, RolfDecision makers use models to understand and analyze a situation, to compare alternatives and to find solutions. Additionally, there are systems that support decision makers through data analysis, calculation or simulation. Typically, modeling languages for humans and machine are different from each other. While humans prefer graphical or textual models, machine-interpretable models have to be represented in a formal language. This chapter describes an approach to modeling that is both cognitively adequate for humans and processable by machines. In addition, the approach supports the creation and adaptation of domain-specific modeling languages. A metamodel which is represented as a formal ontology determines the semantics of the modeling language. To create a graphical modeling language, a graphical notation can be added for each class of the ontology. Every time a new modeling element is created during modeling, an instance for the corresponding class is created in the ontology. Thus, models for humans and machines are based on the same internal representation.04A - Beitrag SammelbandPublikation Case-based reasoning for process experience(Springer, 2018) Martin, Andreas; Hinkelmann, Knut; Dornberger, RolfThe following chapter describes an integrated case-based reasoning (CBR) approach to process learning and experience management. This integrated CBR approach reflects domain knowledge and contextual information based on an enterprise ontology. The approach consists of a case repository, which contains experience items described using a specific case model. The case model reflects, on the one hand, the process logic, i.e. the flow of work, and on the other the business logic, which is the knowledge that can be used to achieve a result.04A - Beitrag SammelbandPublikation Reports of the AAAI 2019 Spring Symposium Series(American Association for Artificial Intelligence, 2019) Baldini, Ioana; Barrett, Clark; Chella, Antonio; Cinelli, Carlos; Gamez, David; Gilpin, Leilani H.; Hinkelmann, Knut; Holmes, Dylan; Kido, Takashi; Kocaoglu, Murat; Lawless, William F.; Lomuscio, Alessio; Macbeth, Jamie C.; Martin, Andreas; Mittu, Ranjeev; Patterson, Evan; Sofge, Donald; Tadepalli, Prasad; Takadama, Keiki; Wilson, ShomirThe AAAI 2019 Spring Series was held Monday through Wednesday, March 25–27, 2019 on the campus of Stanford University, adjacent to Palo Alto, California. The titles of the nine symposia were Artificial Intelligence, Autonomous Machines, and Human Awareness: User Interventions, Intuition and Mutually Constructed Context; Beyond Curve Fitting — Causation, Counterfactuals and Imagination-Based AI; Combining Machine Learning with Knowledge Engineering; Interpretable AI for Well-Being: Understanding Cognitive Bias and Social Embeddedness; Privacy- Enhancing Artificial Intelligence and Language Technologies; Story-Enabled Intelligence; Towards Artificial Intelligence for Collaborative Open Science; Towards Conscious AI Systems; and Verification of Neural Networks.01A - Beitrag in wissenschaftlicher Zeitschrift